Asymptotic normality of the LSE for chirp signal parameters
Volume 11, Issue 2 (2024), pp. 195–216
Pub. online: 23 January 2024
Type: Research Article
Open Access
Received
17 October 2023
17 October 2023
Revised
13 January 2024
13 January 2024
Accepted
13 January 2024
13 January 2024
Published
23 January 2024
23 January 2024
Abstract
A time continuous statistical model of chirp signal observed against the background of stationary Gaussian noise is considered in the paper. Asymptotic normality of the LSE for parameters of such a sinusoidal regression model is obtained.
References
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation (1965). MR0415956
Brillinger, D.R.: Regression for randomly sampled spatial series: the trigonometric case. J. Appl. Probab. Special Vol. 23A, 275–289 (1986). MR0803178. https://doi.org/10.1017/s0021900200117139
Cook, C.E., Bernfeld, M.: Radar Signals: an Introduction to Theory and Applications. Academic Press (1967). https://doi.org/10.1016/B978-0-12-186750-8.X5001-7
Cramer, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Wiley (1967). MR2108670. https://doi.org/10.2307/2344096
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edition, 1221 pp. Academic Press (2007). MR0669666
Grover, R., Kundu, D., Mitra, A.: Asymptotic properties of least squares estimators and sequential least squares estimators of a chirp-like signal model parameters. Circuits Syst. Signal Process. 40(11), 5421–5465 (2021). MR1388718. https://doi.org/10.1007/s00034-021-01724-7
Ivanov, A., Hladun, V.: Consistency of the LSE for chirp signal parameters in the models with strongly and weakly dependent noise. Austrian J. Stat. 52(SI), 107–126 (2023). https://doi.org/10.17713/ajs.v52iSI.1762
Ivanov, A.V.: Consistency of the least squares estimator of the amplitudes and angular frequencies of a sum of harmonic oscillations in model with long-range dependence. Theory Probab. Math. Stat. 80, 61–69 (2010). MR2541952. https://doi.org/10.1090/S0094-9000-2010-00794-0
Ivanov, A.V., Dykyi, O.V.: Consistency of LSE for the many-dimensional symmetric textured surface parameters. Mod. Stoch. Theory Appl. 10(3) (2023). MR4608188. https://doi.org/10.15559/23-VMSTA225
Ivanov, A.V., Lymar, O.V.: The asymptotic normality for the least squares estimator of parameters in a two dimensional sinusoidal model of observations. Theory Probab. Math. Stat. 100, 107–131 (2020). MR3992995. https://doi.org/10.1090/tpms/1100
Ivanov, A.V., Malyar, O.V.: Consistency of the least squares estimators of parameters of the texture surface sinusoidal model. Theory Probab. Math. Stat. 97, 73–84 (2018). MR3746000. https://doi.org/10.1090/tpms/1049
Ivanov, A.V., Savych, I.M.: On the least squares estimators asymptotic normality of the multivariate symmetric textured surface parameters. Theory Probab. Math. Stat. 105, 151–169 (2021). MR4421369. https://doi.org/10.1090/tpms/1161
Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D., Savich, I.N.: Limit theorems for weighted non-linear transformations of Gaussian processes with singular spectra. Ann. Probab. 41(2), 1088–1114 (2013). MR3077537. https://doi.org/10.1214/12-AOP775
Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D., Zhurakovsky, B.M.: Estimation of harmonic component in regression with cyclically dependent errors. Statistics 49(1), 156–186 (2015). MR3304373. https://doi.org/10.1080/02331888.2013.864656
Kundu, D., Mitra, A.: Asymptotic properties of the least squares estimates of 2-D exponential signals. Multidimens. Syst. Signal Process. 7(2), 135–150 (1996). MR1388718. https://doi.org/10.1007/BF01827810
Kundu, D., Nandi, S.: Determination of discrete spectrum in a random fiend. Stat. Neerl. 57(2), 258–283 (2003). MR2028915. https://doi.org/10.1111/1467-9574.00230
Kundu, D., Nandi, S.: Parameter estimation of chirp signals in presence of stationary noise. Stat. Sin. 18, 187–202 (2008). MR2384984
Kundu, D., Nandi, S.: On chirp and some related signal analysis: a brief review and some new results. Sankhya A 83(2), 844–890 (2021). MR4284584. https://doi.org/10.1007/s13171-021-00242-7
Lahiri, A., Kundu, D., Mitra, A.: Estimating the parameters of multiple chirp signals. J. Multivar. Anal. 139, 189–206 (2015). MR3349486. https://doi.org/10.1016/j.jmva.2015.01.019
Leonenko, N., Olenko, A.: Tauberian and Abelian theorems for long-range dependent random fields. Methodol. Comput. Appl. Probab. 15, 715–742 (2013). MR3117624. https://doi.org/10.1007/s11009-012-9276-9
Nandi, S., Kundu, D.: Asymptotic properties of least squares estimators of the parameters of the chirp signals. Ann. Inst. Stat. Math. 56, 529–544 (2004). MR2095017. https://doi.org/10.1007/BF02530540
Nandi, S., Kundu, D.: Statistical Signal Processing: Frequency Estimation, 2nd edition. Springer (2020). MR4211771. https://doi.org/10.1007/978-981-15-6280-8
Nandi, S., Kundu, D., Srivastava, R.K.: Noise space decomposition method for two-dimensional sinusoidal model. Comput. Stat. Data Anal. 58, 147–161 (2013). MR2997932. https://doi.org/10.1016/j.csda.2011.03.002
Quinn, B.G., Hannan, E.J.: The Estimation and Tracking of Frequency. Cambridge University Press (2012). MR1813156. https://doi.org/10.1017/CBO9780511609602
Rao, C.R., Zhao, L.C., Zhou, B.: Maximum likelihood estimation of 2-D superimposed exponential. IEEE Trans. Signal Process. 42, 795–802 (1994). https://doi.org/10.1109/78.298285
Zhang, H., Mandrekar, V.: Estimation of hidden frequencies for 2D stationary processes. J. Time Ser. Anal. 22(5), 613–629 (2001). MR1859568. https://doi.org/10.1111/1467-9892.00244