Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 2 (2015)
  4. Fast L2-approximation of integral-type f ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Fast L2-approximation of integral-type functionals of Markov processes
Volume 2, Issue 2 (2015), pp. 165–171
Iurii Ganychenko  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA29
Pub. online: 28 July 2015      Type: Research Article      Open accessOpen Access

Received
8 July 2015
Revised
20 July 2015
Accepted
22 July 2015
Published
28 July 2015

Abstract

In this paper, we provide strong $L_{2}$-rates of approximation of the integral-type functionals of Markov processes by integral sums. We improve the method developed in [2]. Under assumptions on the process formulated only in terms of its transition probability density, we get the accuracy that coincides with that obtained in [3] for a one-dimensional diffusion process.

1 Introduction

Let $X_{t}$, $t\ge 0$, be a Markov process with values in ${\mathbb{R}}^{d}$. Consider the following objects:
  • 1) the integral functional
    \[I_{T}(h)={\int _{0}^{T}}h(X_{t})\hspace{0.1667em}dt\]
    of this process;
  • 2) the sequence of integral sums
    \[I_{T,n}(h)=\frac{T}{n}\sum \limits_{k=0}^{n-1}h(X_{(kT)/n}),\hspace{1em}n\ge 1.\]
In this paper, we establish strong $L_{2}$-approximation rates, that is, the bounds for
\[E{\big|I_{T}(h)-I_{T,n}(h)\big|}^{2}.\]
The current research is mainly motivated by the recent papers [2] and [3].
In [3], strong $L_{p}$-approximation rates are considered for an important particular case where X is a one-dimensional diffusion. The approach developed in this paper contains both the Malliavin calculus tools and the Gaussian bounds for the transition probability density of the process X, and relies substantially on the structure of the process.
Another approach to that problem has been developed in [2]. This approach is, in a sense, a modification of Dynkin’s theory of continuous additive functionals (see [1], Chap. 6) and also involves the technique similar to that used in the proof of the classical Khasminskii lemma (see, e.g., [4, Lemma 2.1]). This approach allows us to obtain strong $L_{p}$-approximation rates under assumptions on the process X formulated only in terms of its transition probability density.
For a bounded function h, the strong $L_{p}$-rates of approximation of the integral functional $I_{T}(h)$ obtained in [2] essentially coincide with those established in [3]. However, under additional regularity assumptions on the function h (e.g., when h is Hölder continuous), the rates obtained in [3] are sharper (see [2, Thm. 2.2] and [3, Thm. 2.3]).
In this note, we improve the method developed in [2], so that under the assumption of the Hölder continuity of h, the strong $L_{2}$-approximation rates coincide with those obtained in [3], preserving at the same time the advantage of the method that the assumptions on the process X are quite general and do not essentially rely on the structure of the process.

2 Main result

In what follows, $P_{x}$ denotes the law of the Markov process X conditioned by $X_{0}=x$, and $\mathbb{E}_{x}$ denotes the expectation with respect to this law. Both the absolute value of a real number and the Euclidean norm in ${\mathbb{R}}^{d}$ are denoted by $|\cdot |$.
We make the following assumption on the process X.
A. The process X possesses a transition probability density $p_{t}(x,y)$ that is differentiable with respect to t and satisfies the following estimates:
(1)
\[p_{t}(x,y)\le C_{T}{t}^{-d/\alpha }Q\big({t}^{-1/\alpha }(x-y)\big),\hspace{1em}t\le T,\]
(2)
\[\big|\partial _{t}p_{t}(x,y)\big|\le C_{T}{t}^{-1-d/\alpha }Q\big({t}^{-1/\alpha }(x-y)\big),\hspace{1em}t\le T,\]
(3)
\[\big|{\partial _{tt}^{2}}p_{t}(x,y)\big|\le C_{T}{t}^{-2-d/\alpha }Q\big({t}^{-1/\alpha }(x-y)\big),\hspace{1em}t\le T,\]
for some fixed $\alpha \in (0,2]$ and some distribution density Q such that $\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz<\infty $. Without loss of generality, we assume that in (1)–(3) $C_{T}\ge 1$.
We assume that the function h satisfies the Hölder condition with exponent $\gamma \in (0,\alpha /2]$, that is,
\[\| h\| _{\gamma }:=\underset{x\ne y}{\sup }\frac{|h(x)-h(y)|}{|x-y{|}^{\gamma }}<\infty .\]
Now we formulate the main result of the paper.
Theorem 1.
Suppose that Assumption A holds. Then
\[\mathbb{E}_{x}{\big|I_{T}(h)-I_{T,n}(h)\big|}^{2}\le \left\{\begin{array}{l@{\hskip10.0pt}l}D_{T,\gamma ,\alpha ,Q}C_{\gamma ,\alpha }\| h{\| _{\gamma }^{2}}{n}^{-(1+2\gamma /\alpha )},\hspace{1em}& \gamma \ne \alpha /2,\\{} D_{T,\gamma ,\alpha ,Q}\| h{\| _{\gamma }^{2}}{n}^{-2}\ln n,\hspace{1em}& \gamma =\alpha /2,\end{array}\right.\hspace{2.5pt}\]
where
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle D_{T,\gamma ,\alpha ,Q}=8{C_{T}^{2}}{T}^{2+2\gamma /\alpha }\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz,\\{} & \displaystyle C_{\gamma ,\alpha }=\max \bigg\{{(1-2\gamma /\alpha )}^{-1}{(2\gamma /\alpha )}^{-1},\hspace{0.1667em}\underset{n\ge 1}{\max }\bigg(\frac{{(\ln n)}^{2}}{{n}^{1-2\gamma /\alpha }}\bigg)\bigg\}.\end{array}\]
We provide the proof of Theorem 1 in Section 3.
Remark 1.
Any diffusion process satisfies conditions (1)–(3) with $\alpha =2$, $Q(x)=c_{1}{e}^{-c_{2}|x{|}^{2}}$, and properly chosen $c_{1},c_{2}$ (see [2]). In the case where X is a one-dimensional diffusion, Theorem 1 provides the same rates of convergence as those obtained in [3] (see Theorem 2.3 in [3]).
Remark 2.
Similarly to [2], we formulate the assumption on the process X only in terms of its transition probability density. Condition A, compared with condition X (cf. [2]), contains the additional assumption (3).

3 Proof of Theorem 1

Proof.
For $t\in [kT/n,(k+1)T/n)$, denote
\[\eta _{n}(t)=\frac{kT}{n},\hspace{2em}\zeta _{n}(t)=\frac{(k+1)T}{n},\]
and put $\Delta _{n}(s):=h(X_{s})-h(X_{\eta _{n}(s)})$, $s\in [0,T]$.
By the Markov property of X, for any $r<s$, we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}_{x}|X_{s}-X_{r}{|}^{2\gamma }& \displaystyle =\mathbb{E}_{x}\int _{{\mathbb{R}}^{d}}p_{s-r}(X_{r},z)|X_{r}-z{|}^{2\gamma }\hspace{0.1667em}dz\\{} & \displaystyle \le C_{T}\mathbb{E}_{x}\int _{{\mathbb{R}}^{d}}{(s-r)}^{-d/\alpha }Q\big({(s-r)}^{-1/\alpha }(X_{r}-z)\big)|X_{r}-z{|}^{2\gamma }\hspace{0.1667em}dz\\{} & \displaystyle =C_{T}{(s-r)}^{2\gamma /\alpha }\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz.\end{array}\]
Therefore, using the inequality $s-\eta _{n}(s)\le T/n$, $s\in [0,T]$ and the Hölder continuity of the function h, we obtain:
(4)
\[\mathbb{E}_{x}{\big|\Delta _{n}(s)\big|}^{2}\le C_{T}{T}^{2\gamma /\alpha }\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg)\| h{\| _{\gamma }^{2}}{n}^{-2\gamma /\alpha }.\]
Split
(5)
\[\mathbb{E}_{x}{\big|I_{T}(h)-I_{T,n}(h)\big|}^{2}=2\mathbb{E}_{x}{\int _{0}^{T}}{\int _{s}^{T}}\Delta _{n}(s)\Delta _{n}(t)\hspace{0.1667em}dt\hspace{0.1667em}ds=J_{1}+J_{2}+J_{3},\]
where
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle J_{1}=2\mathbb{E}_{x}{\int _{0}^{T}}{\int _{s}^{\zeta _{n}(s)+T/n}}\Delta _{n}(s)\Delta _{n}(t)\hspace{0.1667em}dt\hspace{0.1667em}ds,\\{} & \displaystyle J_{2}=2\mathbb{E}_{x}{\int _{0}^{T/n}}{\int _{\zeta _{n}(s)+T/n}^{T}}\Delta _{n}(s)\Delta _{n}(t)\hspace{0.1667em}dt\hspace{0.1667em}ds,\\{} & \displaystyle J_{3}=2\mathbb{E}_{x}{\int _{T/n}^{T}}{\int _{\zeta _{n}(s)+T/n}^{T}}\Delta _{n}(s)\Delta _{n}(t)\hspace{0.1667em}dt\hspace{0.1667em}ds.\end{array}\]
For $|J_{1}|$ and $|J_{2}|$, the estimates can be obtained in the same way. Indeed, using the Cauchy inequality and (4), we get
\[\begin{array}{r@{\hskip0pt}l}\displaystyle |J_{1}|& \displaystyle \le 2{\int _{0}^{T}}{\int _{s}^{\zeta _{n}(s)+T/n}}{\big(\mathbb{E}_{x}{\big|\Delta _{n}(s)\big|}^{2}\big)}^{1/2}{\big(\mathbb{E}_{x}{\big|\Delta _{n}(t)\big|}^{2}\big)}^{1/2}\hspace{0.1667em}dt\hspace{0.1667em}ds\\{} & \displaystyle \le 2C_{T}{T}^{2\gamma /\alpha }\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg){n}^{-2\gamma /\alpha }{\int _{0}^{T}}\big(T/n+\zeta _{n}(s)-s\big)\hspace{0.1667em}ds\\{} & \displaystyle \le 4C_{T}{T}^{2+2\gamma /\alpha }\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg){n}^{-(1+2\gamma /\alpha )}.\end{array}\]
In the last inequality, we have used the inequality $\zeta _{n}(s)-s\le T/n$, $s\in [0,T]$. Similarly,
\[|J_{2}|\le 2C_{T}{T}^{2+2\gamma /\alpha }\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg){n}^{-(1+2\gamma /\alpha )}.\]
Now we proceed to the estimation of $|J_{3}|$, which is the main part of the proof. Observe that the following identities hold:
(6)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \int _{{\mathbb{R}}^{d}}{\partial _{uv}^{2}}p_{u}(x,y)p_{v-u}(y,z)\hspace{0.1667em}dz& \displaystyle ={\partial _{uv}^{2}}p_{u}(x,y)\int _{{\mathbb{R}}^{d}}p_{v-u}(y,z)\hspace{0.1667em}dz\\{} & \displaystyle ={\partial _{uv}^{2}}p_{u}(x,y)=0,\hspace{1em}y\in {\mathbb{R}}^{d},\end{array}\]
(7)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \int _{{\mathbb{R}}^{d}}{\partial _{uv}^{2}}p_{u}(x,y)p_{v-u}(y,z)\hspace{0.1667em}dy& \displaystyle ={\partial _{uv}^{2}}\int _{{\mathbb{R}}^{d}}p_{u}(x,y)p_{v-u}(y,z)\hspace{0.1667em}dy\\{} & \displaystyle ={\partial _{uv}^{2}}p_{v}(x,z)=0,\hspace{1em}z\in {\mathbb{R}}^{d},\end{array}\]
where in (6) we used that $\int _{{\mathbb{R}}^{d}}p_{r}(y,z)\hspace{0.1667em}dz=1$, $r>0$, $y\in {\mathbb{R}}^{d}$, and in (7) we used the Chapman–Kolmogorov equation.
We have:
(8)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle J_{3}& \displaystyle =2{\int _{T/n}^{T}}{\int _{\zeta _{n}(s)+T/n}^{T}}\int _{{\mathbb{R}}^{d}}\int _{{\mathbb{R}}^{d}}h(y)h(z)\big[p_{s}(x,y)p_{t-s}(y,z)\\{} & \displaystyle \hspace{1em}-p_{\eta _{n}(s)}(x,y)p_{t-\eta _{n}(s)}(y,z)-p_{s}(x,y)p_{\eta _{n}(t)-s}(y,z)\\{} & \displaystyle \hspace{1em}+p_{\eta _{n}(s)}(x,y)p_{\eta _{n}(t)-\eta _{n}(s)}(y,z)\big]\hspace{0.1667em}dz\hspace{0.1667em}dy\hspace{0.1667em}dt\hspace{0.1667em}ds\\{} & \displaystyle =2{\int _{T/n}^{T}}{\int _{\zeta _{n}(s)+T/n}^{T}}\int _{{\mathbb{R}}^{d}}\int _{{\mathbb{R}}^{d}}{\int _{\eta _{n}(s)}^{s}}{\int _{\eta _{n}(t)}^{t}}h(y)h(z){\partial _{uv}^{2}}\big(p_{u}(x,y)\\{} & \displaystyle \hspace{1em}\times p_{v-u}(y,z)\big)\hspace{0.1667em}dv\hspace{0.1667em}du\hspace{0.1667em}dz\hspace{0.1667em}dy\hspace{0.1667em}dt\hspace{0.1667em}ds\\{} & \displaystyle =-{\int _{T/n}^{T}}{\int _{\zeta _{n}(s)+T/n}^{T}}\int _{{\mathbb{R}}^{d}}\int _{{\mathbb{R}}^{d}}{\int _{\eta _{n}(s)}^{s}}{\int _{\eta _{n}(t)}^{t}}{\big(h(y)-h(z)\big)}^{2}{\partial _{uv}^{2}}\big(p_{u}(x,y)\\{} & \displaystyle \hspace{1em}\times p_{v-u}(y,z)\big)\hspace{0.1667em}dv\hspace{0.1667em}du\hspace{0.1667em}dz\hspace{0.1667em}dy\hspace{0.1667em}dt\hspace{0.1667em}ds,\end{array}\]
where in the last identity we have used (6) and (7).
Further, we have
\[{\partial _{uv}^{2}}p_{u}(x,y)p_{v-u}(y,z)=p_{u}(x,y){\partial _{rr}^{2}}p_{r}(y,z)\big|_{r=v-u}+\partial _{u}p_{u}(x,y)\partial _{r}p_{r}(y,z)\big|_{r=v-u}.\]
Then, using condition A and the Hölder continuity of the function h, we obtain
(9)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \int _{{\mathbb{R}}^{d}}\int _{{\mathbb{R}}^{d}}{\big(h(y)-h(z)\big)}^{2}|{\partial _{uv}^{2}}\big(p_{u}(x,y)p_{v-u}(y,z)\big)|\hspace{0.1667em}dz\hspace{0.1667em}dy\\{} & \displaystyle \hspace{1em}\le {C_{T}^{2}}\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg)\big({(v-u)}^{2\gamma /\alpha -2}+{(v-u)}^{2\gamma /\alpha -1}{u}^{-1}\big).\end{array}\]
Therefore, according to (8) and (9),
(10)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle |J_{3}|\le {C_{T}^{2}}\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg)\\{} & \displaystyle \hspace{1em}\times {\int _{T/n}^{T}}{\int _{\zeta _{n}(s)+T/n}^{T}}{\int _{\eta _{n}(s)}^{s}}{\int _{\eta _{n}(t)}^{t}}\big({(v-u)}^{2\gamma /\alpha -2}+{(v-u)}^{2\gamma /\alpha -1}{u}^{-1}\big)\hspace{0.1667em}dv\hspace{0.1667em}du\hspace{0.1667em}dt\hspace{0.1667em}ds.\end{array}\]
Denote $a_{\alpha ,\gamma }(u,v):={(v-u)}^{2\gamma /\alpha -2}+{(v-u)}^{2\gamma /\alpha -1}{u}^{-1}$. Then
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{T/n}^{T}}{\int _{\zeta _{n}(s)+T/n}^{T}}{\int _{\eta _{n}(s)}^{s}}{\int _{\eta _{n}(t)}^{t}}a_{\alpha ,\gamma }(u,v)\hspace{0.1667em}dv\hspace{0.1667em}du\hspace{0.1667em}dt\hspace{0.1667em}ds\\{} & \displaystyle \hspace{1em}=\sum \limits_{i=1}^{n-1}\sum \limits_{j=i+2}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{jT/n}^{(j+1)T/n}}{\int _{iT/n}^{s}}{\int _{jT/n}^{t}}a_{\alpha ,\gamma }(u,v)\hspace{0.1667em}dv\hspace{0.1667em}du\hspace{0.1667em}dt\hspace{0.1667em}ds\\{} & \displaystyle \hspace{1em}=\sum \limits_{i=1}^{n-1}\sum \limits_{j=i+2}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{jT/n}^{(j+1)T/n}}{\int _{u}^{(i+1)T/n}}{\int _{v}^{(j+1)T/n}}a_{\alpha ,\gamma }(u,v)\hspace{0.1667em}dt\hspace{0.1667em}ds\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle \hspace{1em}\le {T}^{2}{n}^{-2}\sum \limits_{i=1}^{n-1}\sum \limits_{j=i+2}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{jT/n}^{(j+1)T/n}}a_{\alpha ,\gamma }(u,v)\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle \hspace{1em}={T}^{2}{n}^{-2}\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{(i+2)T/n}^{T}}a_{\alpha ,\gamma }(u,v)\hspace{0.1667em}dv\hspace{0.1667em}du,\end{array}\]
where in the fourth line we used that, for $u\in [iT/n,(i+1)T/n)$ and $v\in [jT/n,(j+1)T/n)$, we always have $(i+1)T/n-u\le T/n$ and $(j+1)T/n-v\le T/n$.
Thus, from (10) we obtain
(11)
\[|J_{3}|\le {C_{T}^{2}}{T}^{2}\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg){n}^{-2}(S_{1}+S_{2}),\]
where
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle S_{1}=\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{(i+1)T/n}^{T}}{(v-u)}^{2\gamma /\alpha -2}\hspace{0.1667em}dv\hspace{0.1667em}du,\\{} & \displaystyle S_{2}=\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{(i+2)T/n}^{T}}{(v-u)}^{2\gamma /\alpha -1}{u}^{-1}\hspace{0.1667em}dv\hspace{0.1667em}du.\end{array}\]
We estimate each term separately. In what follows, we consider the case $\gamma <\alpha /2$; the case of $\gamma =\alpha /2$ is similar and therefore omitted. We have
(12)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle S_{1}& \displaystyle \le {(1-2\gamma /\alpha )}^{-1}\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\big((i+1)T/n-u\big)}^{2\gamma /\alpha -1}\hspace{0.1667em}du\\{} & \displaystyle ={(1-2\gamma /\alpha )}^{-1}{(2\gamma /\alpha )}^{-1}\sum \limits_{i=1}^{n-1}{\big((i+1)T/n-iT/n\big)}^{2\gamma /\alpha }\\{} & \displaystyle \le {(1-2\gamma /\alpha )}^{-1}{(2\gamma /\alpha )}^{-1}{T}^{2\gamma /\alpha }{n}^{1-2\gamma /\alpha }\le C_{\gamma ,\alpha }{T}^{2\gamma /\alpha }{n}^{1-2\gamma /\alpha }.\end{array}\]
Finally, since $v-u\le T$ for $0\le u<v\le T$, we have
(13)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle S_{2}& \displaystyle \le {T}^{2\gamma /\alpha }\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{(i+2)T/n}^{T}}{(v-u)}^{-1}{u}^{-1}\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle \le {T}^{2\gamma /\alpha }\sum \limits_{i=1}^{n-1}\Bigg({\int _{iT/n}^{(i+1)T/n}}{u}^{-1}\hspace{0.1667em}du\Bigg)\Bigg({\int _{(i+2)T/n}^{T}}{\big(v-(i+1)T/n\big)}^{-1}\hspace{0.1667em}dv\Bigg)\\{} & \displaystyle \le {T}^{2\gamma /\alpha }\ln n\sum \limits_{i=1}^{n-1}\Bigg({\int _{iT/n}^{(i+1)T/n}}{u}^{-1}\hspace{0.1667em}du\Bigg)={T}^{2\gamma /\alpha }{(\ln n)}^{2}\\{} & \displaystyle \le C_{\gamma ,\alpha }{T}^{2\gamma /\alpha }{n}^{1-2\gamma /\alpha }.\end{array}\]
Combining inequality (11) with (12) and (13), we derive
\[|J_{3}|\le 2C_{\gamma ,\alpha }{C_{T}^{2}}{T}^{2+2\gamma /\alpha }\| h{\| _{\gamma }^{2}}\bigg(\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz\bigg){n}^{-(1+2\gamma /\alpha )}.\]
 □

References

[1] 
Dynkin, E.B.: Markov Processes. Academic Press Inc., New York (1965)
[2] 
Ganychenko, I., Kulik, A.: Rates of approximation of nonsmooth integral-type functionals of Markov processes. Mod. Stoch., Theory Appl. 2, 117–126 (2014) MR3316480. doi:10.15559/vmsta-2014.12
[3] 
Kohatsu-Higa, A., Makhlouf, A., Ngo, H.L.: Approximations of non-smooth integral type functionals of one dimensional diffusion precesses. Stoch. Process. Appl. 124, 1881–1909 (2014) MR3170228. doi:10.1016/j.spa.2014.01.003
[4] 
Sznitman, A.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998) MR1717054. doi:10.1007/978-3-662-11281-6
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Main result
  • 3 Proof of Theorem 1
  • References

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Markov processes integral functional rates of convergence strong approximation

MSC2010
60H07 60H35

Metrics
since March 2018
533

Article info
views

305

Full article
views

308

PDF
downloads

160

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 1.
Theorem 1.
Suppose that Assumption A holds. Then
\[\mathbb{E}_{x}{\big|I_{T}(h)-I_{T,n}(h)\big|}^{2}\le \left\{\begin{array}{l@{\hskip10.0pt}l}D_{T,\gamma ,\alpha ,Q}C_{\gamma ,\alpha }\| h{\| _{\gamma }^{2}}{n}^{-(1+2\gamma /\alpha )},\hspace{1em}& \gamma \ne \alpha /2,\\{} D_{T,\gamma ,\alpha ,Q}\| h{\| _{\gamma }^{2}}{n}^{-2}\ln n,\hspace{1em}& \gamma =\alpha /2,\end{array}\right.\hspace{2.5pt}\]
where
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle D_{T,\gamma ,\alpha ,Q}=8{C_{T}^{2}}{T}^{2+2\gamma /\alpha }\int _{{\mathbb{R}}^{d}}|z{|}^{2\gamma }Q(z)\hspace{0.1667em}dz,\\{} & \displaystyle C_{\gamma ,\alpha }=\max \bigg\{{(1-2\gamma /\alpha )}^{-1}{(2\gamma /\alpha )}^{-1},\hspace{0.1667em}\underset{n\ge 1}{\max }\bigg(\frac{{(\ln n)}^{2}}{{n}^{1-2\gamma /\alpha }}\bigg)\bigg\}.\end{array}\]

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy