A test on the location of tangency portfolio for small sample size and singular covariance matrix
Volume 12, Issue 1 (2025), pp. 43–59
Pub. online: 11 July 2024
Type: Research Article
Open Access
Received
20 February 2024
20 February 2024
Revised
20 June 2024
20 June 2024
Accepted
21 June 2024
21 June 2024
Published
11 July 2024
11 July 2024
Abstract
The test for the location of the tangency portfolio on the set of feasible portfolios is proposed when both the population and the sample covariance matrices of asset returns are singular. The particular case of investigation is when the number of observations, n, is smaller than the number of assets, k, in the portfolio, and the asset returns are i.i.d. normally distributed with singular covariance matrix Σ such that $rank(\boldsymbol{\Sigma })=r\lt n\lt k+1$. The exact distribution of the test statistic is derived under both the null and alternative hypotheses. Furthermore, the high-dimensional asymptotic distribution of that test statistic is established when both the rank of the population covariance matrix and the sample size increase to infinity so that $r/n\to c\in (0,1)$. Theoretical findings are completed by comparing the high-dimensional asymptotic test with an exact finite sample test in the numerical study. A good performance of the obtained results is documented. To get a better understanding of the developed theory, an empirical study with data on the returns on the stocks included in the S&P 500 index is provided.
References
Alfelt, G., Mazur, S.: On the mean and variance of the estimated tangency portfolio weights for small samples. Mod. Stoch. Theory Appl. 9(4), 453–482 (2022) MR4510383. https://doi.org/10.15559/22-vmsta212
Bai, Z., Liu, H., Wong, W.-K.: Enhancement of the applicability of Markowitz’s portfolio optimization by utilizing random matrix theory. Math. Finance 19(4), 639–667 (2009) MR2583523. https://doi.org/10.1111/j.1467-9965.2009.00383.x
Bauder, D., Bodnar, T., Mazur, S., Okhrin, Y.: Bayesian inference for the tangent portfolio. Int. J. Theor. Appl. Finance 21(08), 1850054 (2018) MR3897158. https://doi.org/10.1142/S0219024918500541
Bodnar, T., Mazur, S., Podgórski, K.: A test for the global minimum variance portfolio for small sample and singular covariance. AStA Adv. Stat. Anal. 101(3), 253–265 (2017) MR3679345. https://doi.org/10.1007/s10182-016-0282-z
Bodnar, T., Okhrin, Y.: On the product of inverse Wishart and normal distributions with applications to discriminant analysis and portfolio theory. Scand. J. Stat. 38(2), 311–331 (2011) MR2829602. https://doi.org/10.1111/j.1467-9469.2011.00729.x
Bodnar, T., Mazur, S., Nguyen, H.: Estimation of optimal portfolio compositions for small sample and singular covariance matrix. Working paper 15, School of Business, Örebro University, Sweden (2022). https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2022/wp-15-2022.pdf
Bodnar, T., Mazur, S., Podgórski, K.: Singular inverse Wishart distribution and its application to portfolio theory. J. Multivar. Anal. 143, 314–326 (2016) MR3431434. https://doi.org/10.1016/j.jmva.2015.09.021
Bodnar, T., Mazur, S., Podgórski, K., Tyrcha, J.: Tangency portfolio weights for singular covariance matrix in small and large dimensions: estimation and test theory. J. Stat. Plan. Inference 201, 40–57 (2019) MR3913439. https://doi.org/10.1016/j.jspi.2018.11.003
Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econom. 31(3), 307–327 (1986) MR0853051. https://doi.org/10.1016/0304-4076(86)90063-1
Díaz-García, J.A., Gutiérrez-Jáimez, R., Mardia, K.V.: Wishart and pseudo-Wishart distributions and some applications to shape theory. J. Multivar. Anal. 63, 73–87 (1997) MR1491567. https://doi.org/10.1006/jmva.1997.1689
Fujikoshi, Y., Sakurai, T.: Consistency of test-based method for selection of variables in high-dimensional two-group discriminant analysis. Jpn. J. Stat. Data Sci. 2(1), 155–171 (2019) MR3969143. https://doi.org/10.1007/s42081-019-00032-4
Gulliksson, M., Oleynik, A., Mazur, S.: Portfolio selection with a rank-deficient covariance matrix. Comput. Econ. (2023). doi:https://doi.org/10.1007/s10614-023-10404-4
Javed, F., Mazur, S., Thorsén, E.: Tangency portfolio weights under a skew-normal model in small and large dimensions. J. Oper. Res. Soc. 75(7), 1395–1406 (2024). doi:https://doi.org/10.1080/01605682.2023.2249935
Jobson, J.D., Korkie, B.: Estimation for Markowitz efficient portfolios. J. Am. Stat. Assoc. 75(371), 544–554 (1980) MR0590686
Kan, R., Lassance, N.: Optimal portfolio choice with fat tails and parameter uncertainty (2024). https://ssrn.com/abstract=4652814
Karlsson, S., Mazur, S., Muhinyuza, S.: Statistical inference for the tangency portfolio in high dimension. Statistics 55(3), 532–560 (2021) MR4313438. https://doi.org/10.1080/02331888.2021.1951730
Li, H., Bai, Z., Wong, W.-K., McAleer, M.: Spectrally-corrected estimation for high-dimensional Markowitz mean-variance optimization. Econom. Stat. 24, 133–150 (2022) MR4487968. https://doi.org/10.1016/j.ecosta.2021.10.005
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952) MR0103768
Muhinyuza, S.: A test on mean-variance efficiency of the tangency portfolio in high-dimensional setting. Theory Probab. Math. Stat. 103, 103–119 (2020) MR4421345. https://doi.org/10.1090/tpms
Muhinyuza, S., Bodnar, T., Lindholm, M.: A test on the location of the tangency portfolio on the set of feasible portfolios. Appl. Math. Comput. 386, 125519 (2020) MR4126729. https://doi.org/10.1016/j.amc.2020.125519
Nadakuditi, R.R., Eldeman, A.: Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples. IEEE Trans. Signal Process. 56, 2625–2638 (2008) MR1500236. https://doi.org/10.1109/TSP.2008.917356
Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59(2), 347–370 (1991) MR1097532. https://doi.org/10.2307/2938260
Okhrin, Y., Schmid, W.: Distributional properties of portfolio weights. J. Econom. 134(1), 235–256 (2006) MR2328322. https://doi.org/10.1016/j.jeconom.2005.06.022
Osborne, M.F.M.: Brownian motion in the stock market. Oper. Res. 7(2), 145–173 (1959) MR0104513. https://doi.org/10.1287/opre.7.2.145
Palczewski, A., Palczewski, J.: Theoretical and empirical estimates of mean–variance portfolio sensitivity. Eur. J. Oper. Res. 234(2), 402–410 (2014) MR3144729. https://doi.org/10.1016/j.ejor.2013.04.018
Pappas, D., Kiriakopoulos, K., Kaimakamis, G.: Optimal portfolio selection with singular covariance matrix. In: International Mathematical Forum, vol. 5, pp. 2305–2318 (2010) MR2727027
Rencher, A.C.: Methods of Multivariate Analysis. John Wiley & Sons, Inc. (2002) MR1885894. https://doi.org/10.1002/0471271357
Srivastava, M.S.: Multivariate theory for analyzing high dimensional data. J. Japan Statist. Soc. 37(1), 53–86 (2007) MR2392485. https://doi.org/10.14490/jjss.37.53
Van der Vaart, A.W.: Asymptotic Statistics vol. 3. Cambridge university press (2000) MR1652247. https://doi.org/10.1017/CBO9780511802256
Yonenaga, K., Suzukawa, A.: Distribution of the product of a Wishart matrix and a normal vector. Theory Probab. Math. Stat. 108, 209–224 (2023) MR4588246. https://doi.org/10.1090/tpms/1193