The test for the location of the tangency portfolio on the set of feasible portfolios is proposed when both the population and the sample covariance matrices of asset returns are singular. The particular case of investigation is when the number of observations, n, is smaller than the number of assets, k, in the portfolio, and the asset returns are i.i.d. normally distributed with singular covariance matrix Σ such that $rank(\boldsymbol{\Sigma })=r\lt n\lt k+1$. The exact distribution of the test statistic is derived under both the null and alternative hypotheses. Furthermore, the high-dimensional asymptotic distribution of that test statistic is established when both the rank of the population covariance matrix and the sample size increase to infinity so that $r/n\to c\in (0,1)$. Theoretical findings are completed by comparing the high-dimensional asymptotic test with an exact finite sample test in the numerical study. A good performance of the obtained results is documented. To get a better understanding of the developed theory, an empirical study with data on the returns on the stocks included in the S&P 500 index is provided.
In this paper, a sample estimator of the tangency portfolio (TP) weights is considered. The focus is on the situation where the number of observations is smaller than the number of assets in the portfolio and the returns are i.i.d. normally distributed. Under these assumptions, the sample covariance matrix follows a singular Wishart distribution and, therefore, the regular inverse cannot be taken. In the paper, bounds and approximations for the first two moments of the estimated TP weights are derived, as well as exact results are obtained when the population covariance matrix is equal to the identity matrix, employing the Moore–Penrose inverse. Moreover, exact moments based on the reflexive generalized inverse are provided. The properties of the bounds are investigated in a simulation study, where they are compared to the sample moments. The difference between the moments based on the reflexive generalized inverse and the sample moments based on the Moore–Penrose inverse is also studied.