Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 4 (2022)
  4. On the mean and variance of the estimate ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On the mean and variance of the estimated tangency portfolio weights for small samples
Volume 9, Issue 4 (2022), pp. 453–482
Gustav Alfelt ORCID icon link to view author Gustav Alfelt details   Stepan Mazur ORCID icon link to view author Stepan Mazur details  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA212
Pub. online: 2 September 2022      Type: Research Article      Open accessOpen Access

Received
13 December 2021
Revised
24 May 2022
Accepted
29 July 2022
Published
2 September 2022

Abstract

In this paper, a sample estimator of the tangency portfolio (TP) weights is considered. The focus is on the situation where the number of observations is smaller than the number of assets in the portfolio and the returns are i.i.d. normally distributed. Under these assumptions, the sample covariance matrix follows a singular Wishart distribution and, therefore, the regular inverse cannot be taken. In the paper, bounds and approximations for the first two moments of the estimated TP weights are derived, as well as exact results are obtained when the population covariance matrix is equal to the identity matrix, employing the Moore–Penrose inverse. Moreover, exact moments based on the reflexive generalized inverse are provided. The properties of the bounds are investigated in a simulation study, where they are compared to the sample moments. The difference between the moments based on the reflexive generalized inverse and the sample moments based on the Moore–Penrose inverse is also studied.

References

[1] 
Alfelt, G., Bodnar, T., Javed, F., Tyrcha, J.: Singular conditional autoregressive Wishart model for realized covariance matrices. Accepted for publication in Journal of Business and Economic Statistics (2022).
[2] 
Ao, M., Yingying, L., Zheng, X.: Approaching mean-variance efficiency for large portfolios. Rev. Financ. Stud. 32(7), 2890–2919 (2019). https://doi.org/10.1093/rfs/hhy105
[3] 
Bauder, D., Bodnar, T., Mazur, S., Okhrin, Y.: Bayesian Inference for the Tangent Portfolio. Int. J. Theor. Appl. Finance 21(08), 1850054 (2018). MR3897158. https://doi.org/10.1142/S0219024918500541
[4] 
Bodnar, O.: Sequential suveillance of the tangency portfolio weights. Int. J. Theor. Appl. Finance 12(06), 797–810 (2009). https://doi.org/10.1142/S0219024909005464
[5] 
Bodnar, O., Bodnar, T., Parolya, N.: Recent advances in shrinkage-based high-dimensional inference. Journal of Multivariate Analysis 104826 (2022). MR4353848. https://doi.org/10.1016/j.jmva.2021.104826
[6] 
Bodnar, T., Okhrin, Y.: On the product of inverse wishart and normal distributions with applications to discriminant analysis and portfolio theory. Scand. J. Stat. 38(2), 311–331 (2011). MR2829602. https://doi.org/10.1111/j.1467-9469.2011.00729.x
[7] 
Bodnar, T., Mazur, S., Okhrin, Y.: On the exact and approximate distributions of the product of a Wishart matrix with a normal vector. J. Multivar. Anal. 122, 70–81 (2013). MR3189308. https://doi.org/10.1016/j.jmva.2013.07.007
[8] 
Bodnar, T., Mazur, S., Okhrin, Y.: Distribution of the product of singular Wishart Matrix and normal vector. Theory Probab. Math. Stat. 91, 1–15 (2014). MR3364119. https://doi.org/10.1090/tpms/962
[9] 
Bodnar, T., Mazur, S., Parolya, N.: Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions. Scand. J. Stat. 46(2), 636–660 (2019). MR3948571. https://doi.org/10.1111/sjos.12383
[10] 
Bodnar, T., Mazur, S., Podgorski, K.: Singular inverse Wishart distribution and its application to portfolio theory. Journal of Multivariate Analysis, 314–326 (2016). MR3431434. https://doi.org/10.1016/j.jmva.2015.09.021
[11] 
Bodnar, T., Mazur, S., Podgorski, K.: A test for the global minimum variance portfolio for small sample and singular covariance. AStA Adv. Stat. Anal. 101(3), 253–265 (2017). MR3679345. https://doi.org/10.1007/s10182-016-0282-z
[12] 
Bodnar, T., Okhrin, Y., Parolya, N.: Optimal shrinkage-based portfolio selection in high dimensions. Journal of Business & Economic Statistics. to appear (2022)
[13] 
Bodnar, T., Mazur, S., Muhinyuza, S., Parolya, N.: On the product of a singular wishart matrix and a singular gaussian vector in high dimension. Theory Probab. Math. Stat. 99(2), 37–50 (2018). MR3908654. https://doi.org/10.1090/tpms/1078
[14] 
Bodnar, T., Mazur, S., Ngailo, E., Parolya, N.: Discriminant analysis in small and large dimensions. Theory Probab. Math. Stat. 100, 24–42 (2019). MR3992991. https://doi.org/10.1090/tpms/1096
[15] 
Bodnar, T., Mazur, S., Podgorski, K., Tyrcha, J.: Tangency portfolio weights for singular covariance matrix in small and large dimensions: Estimation and test theory. J. Stat. Plan. Inference 201, 40–57 (2019). MR3913439. https://doi.org/10.1016/j.jspi.2018.11.003
[16] 
Bodnar, T., Dmytriv, S., Okhrin, Y., Parolya, N., Schmid, W.: Statistical inference for the expected utility portfolio in high dimensions. IEEE Trans. Acoust. Speech Signal Process. 69, 1–14 (2021). MR4213326. https://doi.org/10.1109/TSP.2020.3037369
[17] 
Boullion, T.L., Odell, P.L.: Generalized Inverse Matrices. Wiley, New York, NY (1971). https://cds.cern.ch/record/213449. MR0338012
[18] 
Britten-Jones, M.: The sampling error in estimates of mean-variance efficient portfolio weights. J. Finance 54(2), 655–671 (1999). https://doi.org/10.1111/0022-1082.00120
[19] 
Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. USA 106, 12267–12272 (2009). https://doi.org/10.1073/pnas.0904287106
[20] 
Cai, T.T., Hu, J., Li, Y., Zheng, X.: High-dimensional minimum variance portfolio estimation based on high-frequency data. J. Econom. 214(2), 482–494 (2020). MR4057056. https://doi.org/10.1016/j.jeconom.2019.04.039
[21] 
Cook, R.D., Forzani, L.: On the mean and variance of the generalized inverse of a singular Wishart matrix. Electron. J. Stat. 5, 146–158 (2011). MR2786485. https://doi.org/10.1214/11-EJS602
[22] 
Ding, Y., Li, Y., Zheng, X.: High dimensional minimum variance portfolio estimation under statistical factor models. J. Econom. 222(1), 502–515 (2021). MR4234830. https://doi.org/10.1016/j.jeconom.2020.07.013
[23] 
Ghazal, G.A., Neudecker, H.: On second-order and fourth-order moments of jointly distributed random matrices: a survey. Linear Algebra Appl. 321(1), 61–93 (2000). MR1799985. https://doi.org/10.1016/S0024-3795(00)00181-6
[24] 
Gulliksson, M., Mazur, S.: An iterative approach to ill-conditioned optimal portfolio selection. Comput. Econ. 56, 773–794 (2020). https://doi.org/10.1007/s10614-019-09943-6
[25] 
Gulliksson, M., Oleynik, A., Mazur, S.: Portfolio selection with a rank-deficient covariance matrix. Working paper (2021)
[26] 
Hautsch, N., Kyj, L.M., Malec, P.: Do high-frequency data improve high-dimensional portfolio allocations? J. Appl. Econom. 30(2), 263–290 (2015). MR3322719. https://doi.org/10.1002/jae.2361
[27] 
Hubbard, D.W.: The Failure of Risk Management: Why It’s Broken and How to Fix It. John Wiley & Sons, (2020)
[28] 
Imori, S., Rosen, D.: On the mean and dispersion of the Moore-Penrose generalized inverse of a Wishart matrix. Electron. J. Linear Algebra 36, 124–133 (2020). MR4089045. https://doi.org/10.13001/ela.2020.5091
[29] 
Javed, F., Mazur, S., Ngailo, E.: Higher order moments of the estimated tangency portfolio weights. J. Appl. Stat. 48(3), 517–535 (2021). MR4205986. https://doi.org/10.1080/02664763.2020.1736523
[30] 
Javed, F., Mazur, S., Thorsén, E.: Tangency portfolio weights under a skew-normal model in small and large dimensions. Working paper ((13) (2021))
[31] 
Karlsson, S., Mazur, S., Muhinyuza, S.: Statistical inference for the tangency portfolio in high dimension. Statistics 55(3), 532–560 (2021). MR4313438. https://doi.org/10.1080/02331888.2021.1951730
[32] 
Kotsiuba, I., Mazur, S.: On the asymptotic and approximate distributions of the product of an inverse wishart matrix and a gaussian vector. Theory of Probability and Mathematical Statstics 93, 95–104 (2015). MR3553443. https://doi.org/10.1090/tpms/1004
[33] 
Kress, R.: Linear Integral Equations. Springer, (1999). MR1723850. https://doi.org/10.1007/978-1-4612-0559-3
[34] 
Ledoit, O., Wolf, M.: Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. Rev. Financ. Stud. 30(12), 4349–4388 (2017). https://doi.org/10.1093/rfs/hhx052
[35] 
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952). https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[36] 
Mathai, A.M., Provost, S.B.: Quadratic Forms in Random Variables. CRC Press, (1992). MR1192786
[37] 
Muhinyuza, S.: A test on mean-variance efficiency of the tangency portfolio in high-dimensional setting. Theory of Probability and Mathematical Statistics In press (2020). MR4421345. https://doi.org/10.1090/tpms
[38] 
Muhinyuza, S., Bodnar, T., Lindholm, M.: A test on the location of the tangency portfolio on the set of feasible portfolios. Appl. Math. Comput. 386, 125519 (2020). MR4126729. https://doi.org/10.1016/j.amc.2020.125519
[39] 
Okhrin, Y., Schmid, W.: Distributional properties of portfolio weights. J. Econom. 134(1), 235–256 (2006). MR2328322. https://doi.org/10.1016/j.jeconom.2005.06.022
[40] 
Planitz, M.: Inconsistent systems of linear equations. Math. Gaz. 63(425), 181–185 (1979). https://doi.org/10.2307/3617890
[41] 
Rubio, F., Mestre, X., Palomar, D.P.: Performance analysis and optimal selection of large minimum variance portfolios under estimation risk. IEEE J. Sel. Top. Signal Process. 6(4), 337–350 (2012). https://doi.org/10.1109/JSTSP.2012.2202634
[42] 
Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable, vol. 2. Random house, (2007)
[43] 
Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, New York (1977). MR0455365
[44] 
Tsukuma, H.: Estimation of a high-dimensional covariance matrix with the Stein loss. J. Multivar. Anal. 148, 1–17 (2016). MR3493016. https://doi.org/10.1016/j.jmva.2016.02.012

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Tangency portfolio singular inverse Wishart Moore–Penrose inverse reflexive generalized inverse estimator moments

MSC2010
62H12 91G10

Funding
Stepan Mazur acknowledges financial support from the internal research grants at Örebro University and from the project “Models for macro and financial economics after the financial crisis” (Dnr: P18-0201) funded by Jan Wallander and Tom Hedelius Foundation.

Metrics
since March 2018
524

Article info
views

539

Full article
views

388

PDF
downloads

99

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy