On the mean and variance of the estimated tangency portfolio weights for small samples
Volume 9, Issue 4 (2022), pp. 453–482
Pub. online: 2 September 2022
Type: Research Article
Open Access
Received
13 December 2021
13 December 2021
Revised
24 May 2022
24 May 2022
Accepted
29 July 2022
29 July 2022
Published
2 September 2022
2 September 2022
Abstract
In this paper, a sample estimator of the tangency portfolio (TP) weights is considered. The focus is on the situation where the number of observations is smaller than the number of assets in the portfolio and the returns are i.i.d. normally distributed. Under these assumptions, the sample covariance matrix follows a singular Wishart distribution and, therefore, the regular inverse cannot be taken. In the paper, bounds and approximations for the first two moments of the estimated TP weights are derived, as well as exact results are obtained when the population covariance matrix is equal to the identity matrix, employing the Moore–Penrose inverse. Moreover, exact moments based on the reflexive generalized inverse are provided. The properties of the bounds are investigated in a simulation study, where they are compared to the sample moments. The difference between the moments based on the reflexive generalized inverse and the sample moments based on the Moore–Penrose inverse is also studied.
References
Ao, M., Yingying, L., Zheng, X.: Approaching mean-variance efficiency for large portfolios. Rev. Financ. Stud. 32(7), 2890–2919 (2019). https://doi.org/10.1093/rfs/hhy105
Bauder, D., Bodnar, T., Mazur, S., Okhrin, Y.: Bayesian Inference for the Tangent Portfolio. Int. J. Theor. Appl. Finance 21(08), 1850054 (2018). MR3897158. https://doi.org/10.1142/S0219024918500541
Bodnar, O.: Sequential suveillance of the tangency portfolio weights. Int. J. Theor. Appl. Finance 12(06), 797–810 (2009). https://doi.org/10.1142/S0219024909005464
Bodnar, O., Bodnar, T., Parolya, N.: Recent advances in shrinkage-based high-dimensional inference. Journal of Multivariate Analysis 104826 (2022). MR4353848. https://doi.org/10.1016/j.jmva.2021.104826
Bodnar, T., Okhrin, Y.: On the product of inverse wishart and normal distributions with applications to discriminant analysis and portfolio theory. Scand. J. Stat. 38(2), 311–331 (2011). MR2829602. https://doi.org/10.1111/j.1467-9469.2011.00729.x
Bodnar, T., Mazur, S., Okhrin, Y.: On the exact and approximate distributions of the product of a Wishart matrix with a normal vector. J. Multivar. Anal. 122, 70–81 (2013). MR3189308. https://doi.org/10.1016/j.jmva.2013.07.007
Bodnar, T., Mazur, S., Okhrin, Y.: Distribution of the product of singular Wishart Matrix and normal vector. Theory Probab. Math. Stat. 91, 1–15 (2014). MR3364119. https://doi.org/10.1090/tpms/962
Bodnar, T., Mazur, S., Parolya, N.: Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions. Scand. J. Stat. 46(2), 636–660 (2019). MR3948571. https://doi.org/10.1111/sjos.12383
Bodnar, T., Mazur, S., Podgorski, K.: Singular inverse Wishart distribution and its application to portfolio theory. Journal of Multivariate Analysis, 314–326 (2016). MR3431434. https://doi.org/10.1016/j.jmva.2015.09.021
Bodnar, T., Mazur, S., Podgorski, K.: A test for the global minimum variance portfolio for small sample and singular covariance. AStA Adv. Stat. Anal. 101(3), 253–265 (2017). MR3679345. https://doi.org/10.1007/s10182-016-0282-z
Bodnar, T., Mazur, S., Muhinyuza, S., Parolya, N.: On the product of a singular wishart matrix and a singular gaussian vector in high dimension. Theory Probab. Math. Stat. 99(2), 37–50 (2018). MR3908654. https://doi.org/10.1090/tpms/1078
Bodnar, T., Mazur, S., Ngailo, E., Parolya, N.: Discriminant analysis in small and large dimensions. Theory Probab. Math. Stat. 100, 24–42 (2019). MR3992991. https://doi.org/10.1090/tpms/1096
Bodnar, T., Mazur, S., Podgorski, K., Tyrcha, J.: Tangency portfolio weights for singular covariance matrix in small and large dimensions: Estimation and test theory. J. Stat. Plan. Inference 201, 40–57 (2019). MR3913439. https://doi.org/10.1016/j.jspi.2018.11.003
Bodnar, T., Dmytriv, S., Okhrin, Y., Parolya, N., Schmid, W.: Statistical inference for the expected utility portfolio in high dimensions. IEEE Trans. Acoust. Speech Signal Process. 69, 1–14 (2021). MR4213326. https://doi.org/10.1109/TSP.2020.3037369
Boullion, T.L., Odell, P.L.: Generalized Inverse Matrices. Wiley, New York, NY (1971). https://cds.cern.ch/record/213449. MR0338012
Britten-Jones, M.: The sampling error in estimates of mean-variance efficient portfolio weights. J. Finance 54(2), 655–671 (1999). https://doi.org/10.1111/0022-1082.00120
Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. USA 106, 12267–12272 (2009). https://doi.org/10.1073/pnas.0904287106
Cai, T.T., Hu, J., Li, Y., Zheng, X.: High-dimensional minimum variance portfolio estimation based on high-frequency data. J. Econom. 214(2), 482–494 (2020). MR4057056. https://doi.org/10.1016/j.jeconom.2019.04.039
Cook, R.D., Forzani, L.: On the mean and variance of the generalized inverse of a singular Wishart matrix. Electron. J. Stat. 5, 146–158 (2011). MR2786485. https://doi.org/10.1214/11-EJS602
Ding, Y., Li, Y., Zheng, X.: High dimensional minimum variance portfolio estimation under statistical factor models. J. Econom. 222(1), 502–515 (2021). MR4234830. https://doi.org/10.1016/j.jeconom.2020.07.013
Ghazal, G.A., Neudecker, H.: On second-order and fourth-order moments of jointly distributed random matrices: a survey. Linear Algebra Appl. 321(1), 61–93 (2000). MR1799985. https://doi.org/10.1016/S0024-3795(00)00181-6
Gulliksson, M., Mazur, S.: An iterative approach to ill-conditioned optimal portfolio selection. Comput. Econ. 56, 773–794 (2020). https://doi.org/10.1007/s10614-019-09943-6
Hautsch, N., Kyj, L.M., Malec, P.: Do high-frequency data improve high-dimensional portfolio allocations? J. Appl. Econom. 30(2), 263–290 (2015). MR3322719. https://doi.org/10.1002/jae.2361
Imori, S., Rosen, D.: On the mean and dispersion of the Moore-Penrose generalized inverse of a Wishart matrix. Electron. J. Linear Algebra 36, 124–133 (2020). MR4089045. https://doi.org/10.13001/ela.2020.5091
Javed, F., Mazur, S., Ngailo, E.: Higher order moments of the estimated tangency portfolio weights. J. Appl. Stat. 48(3), 517–535 (2021). MR4205986. https://doi.org/10.1080/02664763.2020.1736523
Karlsson, S., Mazur, S., Muhinyuza, S.: Statistical inference for the tangency portfolio in high dimension. Statistics 55(3), 532–560 (2021). MR4313438. https://doi.org/10.1080/02331888.2021.1951730
Kotsiuba, I., Mazur, S.: On the asymptotic and approximate distributions of the product of an inverse wishart matrix and a gaussian vector. Theory of Probability and Mathematical Statstics 93, 95–104 (2015). MR3553443. https://doi.org/10.1090/tpms/1004
Kress, R.: Linear Integral Equations. Springer, (1999). MR1723850. https://doi.org/10.1007/978-1-4612-0559-3
Ledoit, O., Wolf, M.: Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. Rev. Financ. Stud. 30(12), 4349–4388 (2017). https://doi.org/10.1093/rfs/hhx052
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952). https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Mathai, A.M., Provost, S.B.: Quadratic Forms in Random Variables. CRC Press, (1992). MR1192786
Muhinyuza, S.: A test on mean-variance efficiency of the tangency portfolio in high-dimensional setting. Theory of Probability and Mathematical Statistics In press (2020). MR4421345. https://doi.org/10.1090/tpms
Muhinyuza, S., Bodnar, T., Lindholm, M.: A test on the location of the tangency portfolio on the set of feasible portfolios. Appl. Math. Comput. 386, 125519 (2020). MR4126729. https://doi.org/10.1016/j.amc.2020.125519
Okhrin, Y., Schmid, W.: Distributional properties of portfolio weights. J. Econom. 134(1), 235–256 (2006). MR2328322. https://doi.org/10.1016/j.jeconom.2005.06.022
Planitz, M.: Inconsistent systems of linear equations. Math. Gaz. 63(425), 181–185 (1979). https://doi.org/10.2307/3617890
Rubio, F., Mestre, X., Palomar, D.P.: Performance analysis and optimal selection of large minimum variance portfolios under estimation risk. IEEE J. Sel. Top. Signal Process. 6(4), 337–350 (2012). https://doi.org/10.1109/JSTSP.2012.2202634
Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, New York (1977). MR0455365
Tsukuma, H.: Estimation of a high-dimensional covariance matrix with the Stein loss. J. Multivar. Anal. 148, 1–17 (2016). MR3493016. https://doi.org/10.1016/j.jmva.2016.02.012