Subdiffusive option price model with Inverse Gaussian subordinator
Pub. online: 12 November 2024
Type: Research Article
Open Access
Received
16 January 2024
16 January 2024
Revised
6 August 2024
6 August 2024
Accepted
3 October 2024
3 October 2024
Published
12 November 2024
12 November 2024
Abstract
The paper focuses on the option price subdiffusive model under the unusual behavior of the market, when the price may not be changed for some time, which is a quite common situation in modern illiquid financial markets or during global crises. In the model, the risk-free bond motion and classical geometrical Brownian motion (GBM) are time-changed by an inverted inverse Gaussian($\mathit{IG}$) subordinator. We explore the correlation structure of the subdiffusive GBM stock returns process, discuss option pricing techniques based on the martingale option pricing method and the fractal Dupire equation, and demonstrate how it applies in the case of the $\mathit{IG}$ subordinator.
References
Ascione, G.: Abstract cauchy problems for the generalized fractional calculus. Nonlinear Anal. 209, 112339 (2021) MR4236481. https://doi.org/10.1016/j.na.2021.112339
Beghin, L., Macci, C., Martinucci, B.: Random time-changes and asymptotic results for a class of continuous-time markov chains on integers with alternating rates. Mod. Stoch. Theory Appl. 8(1), 63–91 (2020) MR4235564. https://doi.org/10.15559/20-vmsta169
Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. 35(7), 368–370 (1949) MR0030151. https://doi.org/10.1073/pnas.35.7.368
Castelli, F., Leonenko, N., Shchestyuk, N.: Student-like models for risky asset with dependence. Stoch. Anal. Appl. 35(3), 452–464 (2017) MR3609373. https://doi.org/10.1080/07362994.2016.1266945
Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos Solitons Fractals 102, 168–174 (2017) MR3672008. https://doi.org/10.1016/j.chaos.2017.04.029
Deng, W.: Finite element method for the space and time fractional fokker–planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009) MR2452858. https://doi.org/10.1137/080714130
Hainaut, D., Leonenko, N.: Option pricing in illiquid markets: A fractional jump–diffusion approach. J. Comput. Appl. Math. 381, 112995 (2021) MR4107797. https://doi.org/10.1016/j.cam.2020.112995
Ivanov, R.V., Ano, K.: Option pricing in time-changed lévy models with compound poisson jumps. Mod. Stoch. Theory Appl. 6(1), 81–107 (2018) MR3935428. https://doi.org/10.15559/18-vmsta124
Jacquier, A., Torricelli, L.: Anomalous diffusions in option prices: connecting trade duration and the volatility term structure. SIAM J. Financ. Math. 11(4), 1137–1167 (2020) MR4173215. https://doi.org/10.1137/19M1289832
Janczura, J., Wyłomańska, A.: Anomalous diffusion models: different types of subordinator distribution. arXiv preprint arXiv:1110.2868 (2011)
Jorgensen, B.: Statistical Properties of the Generalized Inverse Gaussian Distribution vol. 9. Springer (2012) MR0648107
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011) MR2854867. https://doi.org/10.1007/s00020-011-1918-8
Kumar, A., Vellaisamy, P.: Inverse tempered stable subordinators. Stat. Probab. Lett. 103, 134–141 (2015) MR3350873. https://doi.org/10.1016/j.spl.2015.04.010
Kumar, A., Wyłomańska, A., Połoczański, R., Sundar, S.: Fractional brownian motion time-changed by gamma and inverse gamma process. Physica A 468, 648–667 (2017) MR3580705. https://doi.org/10.1016/j.physa.2016.10.060
Magdziarz, M.: Black-scholes formula in subdiffusive regime. J. Stat. Phys. 136, 553–564 (2009) MR2529684. https://doi.org/10.1007/s10955-009-9791-4
Magdziarz, M., Orzeł, S., Weron, A.: Option pricing in subdiffusive bachelier model. J. Stat. Phys. 145, 187–203 (2011) MR2841938. https://doi.org/10.1007/s10955-011-0310-z
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000) MR1809268. https://doi.org/10.1016/S0370-1573(00)00070-3
Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015) MR3342453. https://doi.org/10.1016/j.jcp.2014.04.024
Scalas, E., Toaldo, B.: Limit theorems for prices of options written on semi-markov processes. Theory Probab. Math. Stat. 105, 3–33 (2021) MR4421361. https://doi.org/10.1090/tpms
Shchestyuk, N., Tyshchenko, S.: Option pricing and stochastic optimization. In: International Conference on Stochastic Processes and Algebraic Structures, pp. 651–665 (2019). Springer MR4607864. https://doi.org/10.1007/978-3-031-17820-7_28
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed c 0-semigroups. Potential Anal. 42, 115–140 (2015) MR3297989. https://doi.org/10.1007/s11118-014-9426-5
Torricelli, L.: Trade duration risk in subdiffusive financial models. Physica A 541, 123694 (2020) MR4043912. https://doi.org/10.1016/j.physa.2019.123694