Statistical inference for n th-order mixed fractional Brownian motion with polynomial drift
Pub. online: 19 November 2024
Type: Research Article
Open Access
Received
27 May 2024
27 May 2024
Revised
21 October 2024
21 October 2024
Accepted
29 October 2024
29 October 2024
Published
19 November 2024
19 November 2024
Abstract
The mixed model with polynomial drift of the form $X(t)=\theta \mathcal{P}(t)+\alpha W(t)+\sigma {B_{H}^{n}}(t)$ is studied, where ${B_{H}^{n}}$ is the nth-order fractional Brownian motion with Hurst index $H\in (n-1,n)$ and $n\ge 2$, independent of the Wiener process W. The polynomial function $\mathcal{P}$ is known, with degree $d(\mathcal{P})\in [1,n)$. Based on discrete observations and using the ergodic theorem estimates of H, ${\alpha ^{2}}$ and ${\sigma ^{2}}$ are given. Finally, a continuous time maximum likelihood estimator of θ is provided. Both strong consistency and asymptotic normality of the proposed estimators are established.
References
Almani, H.M., Hosseini, S., Tahmasebi, M.: Fractional Brownian motion with two-variable Hurst exponent. J. Comput. Appl. Math. 388, 113262 (2021). MR4199791. https://doi.org/10.1016/j.cam.2020.113262
Arcones, M.A.: Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 2242–2274 (1994). MR1331224
Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall (1994). MR1304490
Cai, C., Chigansky, P., Kleptsyna, M.: The maximum likelihood drift estimator for mixed fractional Brownian motion (2012). Preprint, available online at arXiv:1208.6253.
Chaouch, H., Maroufy, H., Omari, M.: Statistical inference for models driven by n-th order fractional Brownian motion. Theory Probab. Math. Stat. 108, 29–43 (2023). MR4588238. https://doi.org/10.1090/tpms/1185
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. https://doi.org/10.2307/3318626
Dozzi, M., Mishura, Y., Shevchenko, G.: Asymptotic behavior of mixed power variations and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18(2), 151–175 (2015). MR3348583. https://doi.org/10.1007/s11203-014-9106-5
Dufitinema, J., Pynnönen, S., Sottinen, T.: Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets. Commun. Stat., Simul. Comput. 51(9), 5264–5287 (2022). MR4491681. https://doi.org/10.1080/03610918.2020.1764581
El Omari, M.: Mixtures of higher-order fractional Brownian motions. Commun. Stat., Theory Methods 52(12), 4200–4215 (2023). MR4574931. https://doi.org/10.1080/03610926.2021.1986541
El Omari, M.: An α-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha \in {\mathbb{R}_{+}}$. Sankhya A 85(1), 572–599 (2023). MR4540809. https://doi.org/10.1007/s13171-021-00266-z
El Omari, M.: Parameter estimation for nth-order mixed fractional Brownian motion with polynomial drift. J. Korean Stat. Soc. 52(2), 450–461 (2023). MR4594997. https://doi.org/10.1007/s42952-023-00209-4
El Omari, M.: On the Gaussian Volterra processes with power-type kernels. Stoch. Models 40(1), 152–165 (2024). MR4694530. https://doi.org/10.1080/15326349.2023.2212763
Gohberg, I., Goldberg, S.: Basic Operator Theory. Birkhäuser (1981). MR0632943
Gupta, A., Joshi, S.D., Prasad, S.: A new approach for estimation of statistically matched wavelet. IEEE Trans. Signal Process. 53(5), 1778–1793 (2005). MR2148604. https://doi.org/10.1109/TSP.2005.845470
Han, X.: A Gladyshev theorem for trifractional Brownian motion and n-th order fractional Brownian motion. Electron. Commun. Probab. 26, 1–12 (2021). MR4319988. https://doi.org/10.1214/21-ecp422
Kukush, A., Lohvinenko, S., Mishura, Y., Ralchenko, K.: Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend. In: Statistical Inference for Stochastic Processes, vol. 25, pp. 159–187 (2022). MR4419677. https://doi.org/10.1007/s11203-021-09252-6
Liang, W., Yiming, D.: Wavelet-based estimator for the Hurst parameters of fractional Brownian sheet. Acta Math. Sci. 37(1), 205–222 (2017). MR3581537. https://doi.org/10.1016/S0252-9602(16)30126-6
Liptsert, R.S., Shiryaev, A.N.: Statistics of Random Processes I. General Theory, vol. 394. Springer (2001). MR1800857
Lundahl, T., Ohley, W.J., Kay, S.M., Siffert, R.: Fractional Brownian motion: A maximum likelihood estimator and its application to image texture. IEEE Trans. Med. Imaging 5(3), 152–161 (1986). https://doi.org/10.1109/TMI.1986.4307764
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968). MR0242239. https://doi.org/10.1137/1010093
Mishura, Y.: Maximum likelihood drift estimation for the mixing of two fractional Brownian motions. In: Stochastic and Infinite Dimensional Analysis, pp. 263–280. Springer (2016). MR3708386. https://doi.org/10.1007/978-3-319-07245-6_14
Morales, C.J.: Wavelet-based multifractal spectra estimation: Statistical aspects and applications. Boston University (2002). MR2703146
Pentland, A.P.: Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (1984). https://doi.org/10.1109/TPAMI.1984.4767591
Perrin, E., Harba, R., Berzin-Joseph, C., Iribarren, I., Bonami, A.: nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans. Signal Process. 49(5), 1049–1059 (2001). https://doi.org/10.1109/78.917808
Ralchenko, K., Yakovliev, M.: Asymptotic normality of parameter estimators for mixed fractional Brownian motion with trend. Austrian J. Stat. 52(SI), 127–148 (2023). https://doi.org/10.17713/ajs.v52iSI.1770
Ralchenko, K., Yakovliev, M.: Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations. Mod. Stoch. Theory Appl. 11(1), 1–29 (2024). MR4692015
Shiryaev, A.N.: Probability-1, vol. 95. Springer (1996). MR1368405. https://doi.org/10.1007/978-1-4757-2539-1
Sottinen, T., Viitasaari, L.: Transfer principle for n-th order fractional Brownian motion with applications to prediction and equivalence in law. Theory Probab. Math. Stat. 98, 199–216 (2019). MR3824687. https://doi.org/10.1090/tpms/1071
Van der Vaart, A.W.: Asymptotic Statistics, vol. 3. Cambridge University Press (1998). MR1652247. https://doi.org/10.1017/CBO9780511802256
Xiao, W.-L., Zhang, W.-G., Zhang, X.-L.: Maximum-likelihood estimators in the mixed fractional Brownian motion. Statistics 45(1), 73–85 (2011). MR2772157. https://doi.org/10.1080/02331888.2010.541254
Zhang, P., Sun, Q., Xiao, W.-L.: Parameter identification in mixed Brownian–fractional Brownian motions using Powell’s optimization algorithm. Econ. Model. 40, 314–319 (2014). https://doi.org/10.1016/j.econmod.2014.04.026