Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 12, Issue 2 (2025)
  4. Statistical inference for nth-order mixe ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Statistical inference for nth-order mixed fractional Brownian motion with polynomial drift
Volume 12, Issue 2 (2025), pp. 169–187
Mohamed El Omari ORCID icon link to view author Mohamed El Omari details  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA267
Pub. online: 19 November 2024      Type: Research Article      Open accessOpen Access

Received
27 May 2024
Revised
21 October 2024
Accepted
29 October 2024
Published
19 November 2024

Abstract

The mixed model with polynomial drift of the form $X(t)=\theta \mathcal{P}(t)+\alpha W(t)+\sigma {B_{H}^{n}}(t)$ is studied, where ${B_{H}^{n}}$ is the nth-order fractional Brownian motion with Hurst index $H\in (n-1,n)$ and $n\ge 2$, independent of the Wiener process W. The polynomial function $\mathcal{P}$ is known, with degree $d(\mathcal{P})\in [1,n)$. Based on discrete observations and using the ergodic theorem estimates of H, ${\alpha ^{2}}$ and ${\sigma ^{2}}$ are given. Finally, a continuous time maximum likelihood estimator of θ is provided. Both strong consistency and asymptotic normality of the proposed estimators are established.

References

Declarations

Conflicts of interests.  No potential conflict of interest was reported by the author.
[1] 
Almani, H.M., Hosseini, S., Tahmasebi, M.: Fractional Brownian motion with two-variable Hurst exponent. J. Comput. Appl. Math. 388, 113262 (2021). MR4199791. https://doi.org/10.1016/j.cam.2020.113262
[2] 
Arcones, M.A.: Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 2242–2274 (1994). MR1331224
[3] 
Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall (1994). MR1304490
[4] 
Cai, C., Chigansky, P., Kleptsyna, M.: The maximum likelihood drift estimator for mixed fractional Brownian motion (2012). Preprint, available online at arXiv:1208.6253.
[5] 
Chaouch, H., Maroufy, H., Omari, M.: Statistical inference for models driven by n-th order fractional Brownian motion. Theory Probab. Math. Stat. 108, 29–43 (2023). MR4588238. https://doi.org/10.1090/tpms/1185
[6] 
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. https://doi.org/10.2307/3318626
[7] 
Dozzi, M., Mishura, Y., Shevchenko, G.: Asymptotic behavior of mixed power variations and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18(2), 151–175 (2015). MR3348583. https://doi.org/10.1007/s11203-014-9106-5
[8] 
Dufitinema, J., Pynnönen, S., Sottinen, T.: Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets. Commun. Stat., Simul. Comput. 51(9), 5264–5287 (2022). MR4491681. https://doi.org/10.1080/03610918.2020.1764581
[9] 
El Omari, M.: Mixtures of higher-order fractional Brownian motions. Commun. Stat., Theory Methods 52(12), 4200–4215 (2023). MR4574931. https://doi.org/10.1080/03610926.2021.1986541
[10] 
El Omari, M.: An α-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha \in {\mathbb{R}_{+}}$. Sankhya A 85(1), 572–599 (2023). MR4540809. https://doi.org/10.1007/s13171-021-00266-z
[11] 
El Omari, M.: Parameter estimation for nth-order mixed fractional Brownian motion with polynomial drift. J. Korean Stat. Soc. 52(2), 450–461 (2023). MR4594997. https://doi.org/10.1007/s42952-023-00209-4
[12] 
El Omari, M.: On the Gaussian Volterra processes with power-type kernels. Stoch. Models 40(1), 152–165 (2024). MR4694530. https://doi.org/10.1080/15326349.2023.2212763
[13] 
Gohberg, I., Goldberg, S.: Basic Operator Theory. Birkhäuser (1981). MR0632943
[14] 
Guo, J., Chen, Y., Hu, B., Yan, L.-Q., Guo, Y., Liu, Y.: Fractional Gaussian fields for modeling and rendering of spatially-correlated media. ACM Trans. Graph. 38(4), 1–13 (2019)
[15] 
Gupta, A., Joshi, S.D., Prasad, S.: A new approach for estimation of statistically matched wavelet. IEEE Trans. Signal Process. 53(5), 1778–1793 (2005). MR2148604. https://doi.org/10.1109/TSP.2005.845470
[16] 
Han, X.: A Gladyshev theorem for trifractional Brownian motion and n-th order fractional Brownian motion. Electron. Commun. Probab. 26, 1–12 (2021). MR4319988. https://doi.org/10.1214/21-ecp422
[17] 
Jennane, R., Harba, R.: Fractional Brownian motion: A model for image texture. In: EUSIPCO, Signal Processing, vol. 3, pp. 1389–1392 (1994)
[18] 
Kukush, A., Lohvinenko, S., Mishura, Y., Ralchenko, K.: Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend. In: Statistical Inference for Stochastic Processes, vol. 25, pp. 159–187 (2022). MR4419677. https://doi.org/10.1007/s11203-021-09252-6
[19] 
Liang, W., Yiming, D.: Wavelet-based estimator for the Hurst parameters of fractional Brownian sheet. Acta Math. Sci. 37(1), 205–222 (2017). MR3581537. https://doi.org/10.1016/S0252-9602(16)30126-6
[20] 
Liptsert, R.S., Shiryaev, A.N.: Statistics of Random Processes I. General Theory, vol. 394. Springer (2001). MR1800857
[21] 
Lundahl, T., Ohley, W.J., Kay, S.M., Siffert, R.: Fractional Brownian motion: A maximum likelihood estimator and its application to image texture. IEEE Trans. Med. Imaging 5(3), 152–161 (1986). https://doi.org/10.1109/TMI.1986.4307764
[22] 
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968). MR0242239. https://doi.org/10.1137/1010093
[23] 
Mishura, Y.: Maximum likelihood drift estimation for the mixing of two fractional Brownian motions. In: Stochastic and Infinite Dimensional Analysis, pp. 263–280. Springer (2016). MR3708386. https://doi.org/10.1007/978-3-319-07245-6_14
[24] 
Morales, C.J.: Wavelet-based multifractal spectra estimation: Statistical aspects and applications. Boston University (2002). MR2703146
[25] 
Pentland, A.P.: Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (1984). https://doi.org/10.1109/TPAMI.1984.4767591
[26] 
Perrin, E., Harba, R., Berzin-Joseph, C., Iribarren, I., Bonami, A.: nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans. Signal Process. 49(5), 1049–1059 (2001). https://doi.org/10.1109/78.917808
[27] 
Ralchenko, K., Yakovliev, M.: Asymptotic normality of parameter estimators for mixed fractional Brownian motion with trend. Austrian J. Stat. 52(SI), 127–148 (2023). https://doi.org/10.17713/ajs.v52iSI.1770
[28] 
Ralchenko, K., Yakovliev, M.: Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations. Mod. Stoch. Theory Appl. 11(1), 1–29 (2024). MR4692015
[29] 
Shiryaev, A.N.: Probability-1, vol. 95. Springer (1996). MR1368405. https://doi.org/10.1007/978-1-4757-2539-1
[30] 
Sottinen, T., Viitasaari, L.: Transfer principle for n-th order fractional Brownian motion with applications to prediction and equivalence in law. Theory Probab. Math. Stat. 98, 199–216 (2019). MR3824687. https://doi.org/10.1090/tpms/1071
[31] 
Van der Vaart, A.W.: Asymptotic Statistics, vol. 3. Cambridge University Press (1998). MR1652247. https://doi.org/10.1017/CBO9780511802256
[32] 
Xiao, W.-L., Zhang, W.-G., Zhang, X.-L.: Maximum-likelihood estimators in the mixed fractional Brownian motion. Statistics 45(1), 73–85 (2011). MR2772157. https://doi.org/10.1080/02331888.2010.541254
[33] 
Zabat, M., Vayer-Besançon, M., Harba, R., Bonnamy, S., Van Damme, H.: Surface topography and mechanical properties of smectite films. In: Trends in Colloid and Interface Science XI, pp. 96–102 (1997).
[34] 
Zhang, P., Sun, Q., Xiao, W.-L.: Parameter identification in mixed Brownian–fractional Brownian motions using Powell’s optimization algorithm. Econ. Model. 40, 314–319 (2014). https://doi.org/10.1016/j.econmod.2014.04.026

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
nth-order fractional Brownian motion maximum likelihood estimator ergodicity consistency asymptotic normality

MSC2010
60G18 60G22 62F10 62F12

Metrics
since March 2018
276

Article info
views

79

Full article
views

107

PDF
downloads

24

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy