Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 3 (2015): PRESTO-2015
  4. Pricing the European call option in the ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Pricing the European call option in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Exact formulas
Volume 2, Issue 3 (2015): PRESTO-2015, pp. 233–249
Sergii Kuchuk-Iatsenko   Yuliya Mishura  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA36CNF
Pub. online: 25 September 2015      Type: Research Article      Open accessOpen Access

Received
29 July 2015
Revised
13 September 2015
Accepted
14 September 2015
Published
25 September 2015

Abstract

We consider the Black–Scholes model of financial market modified to capture the stochastic nature of volatility observed at real financial markets. For volatility driven by the Ornstein–Uhlenbeck process, we establish the existence of equivalent martingale measure in the market model. The option is priced with respect to the minimal martingale measure for the case of uncorrelated processes of volatility and asset price, and an analytic expression for the price of European call option is derived. We use the inverse Fourier transform of a characteristic function and the Gaussian property of the Ornstein–Uhlenbeck process.

References

[1] 
Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, New York (2006). MR2200584
[2] 
Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. Appl. Stoch. Anal. 5, 389–414 (1991). MR1108430
[3] 
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, USA (2000). MR1768877
[4] 
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Mean-reverting stochastic volatility. Int. J. Theor. Appl. Finance 3(1), 101–142 (2000)
[5] 
Frey, R.: Derivative asset analysis in models with level-dependent and stochastic volatility. CWI Quart. 10, 39–52 (1997). MR1472800
[6] 
Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)
[7] 
Jackwerth, J., Rubinstein, M.: Recovering probability distributions from contemoraneous security prices. J. Finance 51(5), 1611–1631 (1996)
[8] 
Kallianpur, G., Karandikar, R.L.: Introduction to Option Pricing Theory. Springer, New York (2000). MR1718056. doi:10.1007/978-1-4612-0511-1
[9] 
Mishura, Y., Rizhniak, G., Zubchenko, V.: European call option issued on a bond governed by a geometric or a fractional geometric Ornstein–Uhlenbeck process. Mod. Stoch., Theory Appl. 1, 95–108 (2014). MR3314796. doi:10.15559/vmsta-2014.1.1.2
[10] 
Perelló, J., Sircar, R., Masoliver, J.: Option pricing under stochastic volatility: the exponential Ornstein–Uhlenbeck model. J. Stat. Mech. 1, 06010 (2008)
[11] 
Rubinstein, M.: Nonparametric tests of alternative option pricing models. J. Finance 2, 455–480 (1985)
[12] 
Schmelzle, M.: Option pricing formulae using Fourier transform: theory and application. http://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf July 2015
[13] 
Scott, L.: Option pricing when the variance changes randomly: theory, estimation, and an application. J. Financ. Quant. Anal. 22, 419–438 (1987)
[14] 
Shephard, N., Andersen, T.G.: Stochastic volatility: origins and overview. In: Handbook of Financial Time Series, pp. 233–254. Springer, Berlin (2009)
[15] 
Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific Publishing Co. Pte. Ltd., Singapore (1999). MR1695318. doi:10.1142/9789812385192
[16] 
Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4(4), 727–752 (1991)
[17] 
Wong, B., Heyde, C.C.: On changes of measure in stochastic volatility models. J. Appl. Math. Stoch. Anal. 2006, 13 (2006). MR2270326. doi:10.1155/JAMSA/2006/18130

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Financial markets stochastic volatility Ornstein–Uhlenbeck process option pricing

MSC2010
91B24 91B25 91G20

Metrics (since March 2018)
816

Article info
views

617

Full article
views

348

PDF
downloads

70

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy