Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 3 (2015): PRESTO-2015
  4. Weak approximation rates for integral fu ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Weak approximation rates for integral functionals of Markov processes
Volume 2, Issue 3 (2015): PRESTO-2015, pp. 251–266
Iurii Ganychenko   Alexei Kulik  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA37CNF
Pub. online: 23 September 2015      Type: Research Article      Open accessOpen Access

Received
6 September 2015
Accepted
14 September 2015
Published
23 September 2015

Abstract

We obtain weak rates for approximation of an integral functional of a Markov process by integral sums. An assumption on the process is formulated only in terms of its transition probability density, and, therefore, our approach is not strongly dependent on the structure of the process. Applications to the estimates of the rates of approximation of the Feynman–Kac semigroup and of the price of “occupation-time options” are provided.

1 Introduction and main results

Let $X_{t}$, $t\ge 0$, be a Markov process with values in ${\mathbb{R}}^{d}$. We consider the following objects:
1) the integral functional
\[I_{T}(h)={\int _{0}^{T}}h(X_{t})\hspace{0.1667em}dt\]
of this process;
2) the sequence of integral sums
\[I_{T,n}(h)=\frac{T}{n}\sum \limits_{k=0}^{n-1}h(X_{(kT)/n}),\hspace{1em}n\ge 1.\]
The problem we are focused on is obtaining upper bounds on the accuracy of approximation of the integral functional $I_{T}(h)$ by the integral sums $I_{T,n}(h)$ without any regularity assumption on the function h. The function h is only assumed to be measurable and bounded. Therefore, the class of functionals $I_{T}(h)$ contains, for example, the occupation time of the process X in a set $A\subset \mathcal{B}({\mathbb{R}}^{d})$ (in this case, $h=\mathbb{I}_{A}$).
The problem of estimating the expectation of expressions that contain both the value of a process and the value of an integral functional of this process arises naturally in a wide range of probabilistic problems. Two of them related with the Feynman–Kac semigroup and the price of an occupation-time option are discussed in Section 3. An exact calculation of such expressions, if possible, can be performed only under substantial assumptions on the structure of functionals and processes; see, for example, [3], where the price of an occupation-time option is precisely calculated for a Lévy process with only negative jumps. For more complicated models, it is natural to use approximative methods, which naturally require estimates of approximation errors. This motivates the main aim of the paper to evaluate the error bounds for discrete approximations of the integral functional $I_{T}(h)$.
In what follows, $P_{x}$ denotes the law of the Markov process X conditioned by $X_{0}=x$, and $\mathbb{E}_{x}$ denotes the expectation with respect to this law. Both the absolute value of a real number and the Euclidean norm in ${\mathbb{R}}^{d}$ are denoted by $|\cdot |$; $\| \cdot \| $ denotes the sup-norm in $L_{\infty }$.
The following result was obtained in [2] as a part of the proof of a more general statement (see Theorem 2.5 in [2]).
Proposition 1.
Suppose that X is a multidimensional diffusion process with bounded Hölder continuous coefficients and that its diffusion coefficient satisfies the uniform ellipticity condition
\[\big(a(x)\theta ,\theta \big)_{{\mathbb{R}}^{d}}\ge c|\theta {|}^{2},\hspace{1em}x,\theta \in {\mathbb{R}}^{d},\hspace{2.5pt}c>0.\]
Then there exists a positive constant C such that
(1)
\[\big|E_{x}I_{T}(h)-E_{x}I_{T,n}(h)\big|\le C\| h\| \frac{\log n}{n}.\]
The scheme of the proof of this result can be extended straightforwardly to the case of arbitrary Markov process that satisfies the following assumption (see Proposition 2.1 [1]):
X.
The process X possesses a transition probability density $p_{t}(x,y)$ that is differentiable with respect to t and satisfies
(2)
\[\big|\partial _{t}p_{t}(x,y)\big|\le C_{T}{t}^{-1}q_{t,x}(y),\hspace{1em}t\le T,\hspace{2.5pt}C_{T}\ge 1,\]
for some measurable function q such that for any fixed t and x, the function $q_{t,x}$ is a distribution density.
Remark 1.
A diffusion process satisfies condition X with
\[q_{t,x}(y)\hspace{2.5pt}=c_{1}{t}^{-d/2}\exp \big(-c_{2}{t}^{-1}|x-y{|}^{2}\big)\]
and properly chosen $c_{1},c_{2}$. The other examples of the processes satisfying condition (2) are provided in [1]. Among them, we should mention an α-stable process.
Under assumption X, Proposition 1 and Proposition 2.1 in [1] give bounds for the rate of approximation of expectations of the integral functionals of the process X. Such approximation rates are called weak. Strong $L_{p}$-rates, that is, the bounds for
\[E_{x}{\big|I_{T}(h)-I_{T,n}(h)\big|}^{p},\]
have been recently obtained in [4] for diffusion processes and in [1] without restrictions on the structure of the processes. In this paper, we provide another generalization of the weak rate (1), namely, the rates of approximation for expectations of more complicated functionals. Let us formulate the main result of this paper.
Theorem 1.
Suppose that X holds. Then for each $k\in \mathbb{N}$ and any bounded function f,
\[\big|E_{x}{\big(I_{T}(h)\big)}^{k}f(X_{T})-E_{x}{\big(I_{T,n}(h)\big)}^{k}f(X_{T})\big|\le 6{k}^{2}C_{T}{T}^{k}\| h{\| }^{k}\bigg(\frac{\log n}{n}\bigg)\| f\| .\]
Clearly, Proposition 2.1 in [1] is a particular case of Theorem 1. The latter statement is a substantial extension of the former one: it contains both the moments of any order of the integral functional and the value of the process in the final time moment. Using the Taylor expansion, we obtain the following corollary of Theorem 1.
Consider any analytic function g defined in a neighborhood of 0 and constants $D_{g},R_{g}>0$ such that $|\frac{{g}^{(m)}(0)}{m!}|\le D_{g}{(\frac{1}{R_{g}})}^{m}$ for any natural m.
Corollary 1.
Suppose that X holds. Then for any bounded function f and a function h such that $T\| h\| <R_{g}$, we have:
(3)
\[\big|E_{x}g\big(I_{T}(h)\big)f(X_{T})-E_{x}g\big(I_{T,n}(h)\big)f(X_{T})\big|\le C_{T,h,D_{g},R_{g}}\bigg(\frac{\log n}{n}\bigg)\| f\| ,\]
where
\[C_{T,h,D_{g},R_{g}}=6D_{g}C_{T}\frac{T\| h\| }{R_{g}}\bigg(1+\frac{T\| h\| }{R_{g}}\bigg)\frac{1}{{(1-\frac{T\| h\| }{R_{g}})}^{3}}.\]
We provide the proof of Theorem 1 in Section 2. In Section 3, we give an application of Theorem 1 to estimates of the rates of approximation of the Feynman–Kac semigroup and of the price of an occupation-time option.

2 Proof of Theorem 1

Denote
\[S_{k,a,b}:=\big\{(s_{1},s_{2},\dots ,s_{k})\in {\mathbb{R}}^{k}|a\le s_{1}<s_{2}<\cdots <s_{k}\le b\big\},\hspace{1em}k\in \mathbb{N},\hspace{2.5pt}a,b\in \mathbb{R},\]
and for each $t\in [kT/n,(k+1)T/n)$, put $\eta _{n}(t):=\frac{kT}{n}$.
We have:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \frac{1}{k!}\big(E_{x}\big[{\big(I_{T}(h)\big)}^{k}-{\big(I_{T,n}(h)\big)}^{k}\big]f(X_{T})\big)\\{} & \displaystyle \hspace{1em}=E_{x}\int _{S_{k,0,T}}\Bigg[\prod \limits_{i=1}^{k}h(X_{s_{i}})-\prod \limits_{i=1}^{k}h(X_{\eta _{n}(s_{i})})\Bigg]f(X_{T})\prod \limits_{i=1}^{k}ds_{i}\\{} & \displaystyle \hspace{1em}=\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\Bigg(\prod \limits_{i=1}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i}-\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)p_{T-\eta _{n}(s_{k})}(y_{k},z)dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i},\end{array}\]
where $s_{0}=0$, $y_{0}=x$.
Rewrite the expression under the integral
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg(\prod \limits_{i=1}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{1em}-\Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)p_{T-\eta _{n}(s_{k})}(y_{k},z)\end{array}\]
in the form
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg(\prod \limits_{i=1}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\mp p_{\eta _{n}(s_{1})}(x,y_{1})\Bigg(\prod \limits_{i=2}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}-\Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)p_{T-\eta _{n}(s_{k})}(y_{k},z)\\{} & \displaystyle \hspace{1em}=\Bigg(\prod \limits_{i=1}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\mp p_{\eta _{n}(s_{1})}(x,y_{1})\Bigg(\prod \limits_{i=2}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\mp p_{\eta _{n}(s_{1})}(x,y_{1})p_{s_{2}-\eta _{n}(s_{1})}(y_{1},y_{2})\Bigg(\prod \limits_{i=3}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}-\Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)p_{T-\eta _{n}(s_{k})}(y_{k},z)\\{} & \displaystyle \hspace{1em}\hspace{2em}\hspace{2em}\hspace{2em}\hspace{2em}\hspace{2em}\hspace{2em}\vdots \\{} & \displaystyle \hspace{1em}=J_{1}+J_{2}+\cdots +J_{2k-1}+J_{2k},\end{array}\]
where
\[\begin{array}{r@{\hskip0pt}l}\displaystyle J_{1}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}\big(p_{s_{1}}(x,y_{1})-p_{\eta _{n}(s_{1})}(x,y_{1})\big)\Bigg(\prod \limits_{i=2}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z),\\{} \displaystyle J_{2}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}p_{\eta _{n}(s_{1})}(x,y_{1})\big(p_{s_{2}-s_{1}}(y_{1},y_{2})-p_{s_{2}-\eta _{n}(s_{1})}(y_{1},y_{2})\big)\\{} & \displaystyle \hspace{1em}\times \Bigg(\prod \limits_{i=3}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z),\\{} \displaystyle J_{3}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}p_{\eta _{n}(s_{1})}(x,y_{1})\big(p_{s_{2}-\eta _{n}(s_{1})}(y_{1},y_{2})-p_{\eta _{n}(s_{2})-\eta _{n}(s_{1})}(y_{1},y_{2})\big)\\{} & \displaystyle \hspace{1em}\times \Bigg(\prod \limits_{i=3}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z),\\{} \displaystyle J_{4}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}p_{\eta _{n}(s_{1})}(x,y_{1})p_{\eta _{n}(s_{2})-\eta _{n}(s_{1})}(y_{1},y_{2})\big(p_{s_{3}-s_{2}}(y_{2},y_{3})-p_{s_{3}-\eta _{n}(s_{2})}(y_{2},y_{3})\big)\\{} & \displaystyle \hspace{1em}\times \Bigg(\prod \limits_{i=4}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z),\\{} \displaystyle J_{5}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}p_{\eta _{n}(s_{1})}(x,y_{1})p_{\eta _{n}(s_{2})-\eta _{n}(s_{1})}(y_{1},y_{2})\big(p_{s_{3}-\eta _{n}(s_{2})}(y_{2},y_{3})\hspace{0.1667em}-p_{\eta _{n}(s_{3})-\eta _{n}(s_{2})}(y_{2},y_{3})\big)\\{} & \displaystyle \hspace{1em}\times \Bigg(\prod \limits_{i=4}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z),\\{} & \displaystyle \hspace{1em}\hspace{2em}\hspace{2em}\hspace{2em}\hspace{2em}\hspace{2em}\hspace{2em}\vdots \\{} \displaystyle J_{2k-1}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}\Bigg(\prod \limits_{i=1}^{k-1}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)\\{} & \displaystyle \hspace{1em}\times \big(p_{s_{k}-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})-p_{\eta _{n}(s_{k})-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})\big)p_{T-s_{k}}(y_{k},z),\\{} \displaystyle J_{2k}& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}\Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)\big(p_{T-s_{k}}(y_{k},z)-p_{T-\eta _{n}(s_{k})}(y_{k},z)\big).\end{array}\]
Therefore,
(4)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \frac{1}{k!}\big(E_{x}\big[{\big(I_{T}(h)\big)}^{k}-{\big(I_{T,n}(h)\big)}^{k}\big]f(X_{T})\big)\\{} & \displaystyle \hspace{-0.1667em}\hspace{1em}=\hspace{-0.1667em}\hspace{-0.1667em}\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)(J_{1}\hspace{0.1667em}+\hspace{0.1667em}J_{2}\hspace{0.1667em}+\hspace{0.1667em}\cdots \hspace{0.1667em}+\hspace{0.1667em}J_{2k-1}\hspace{0.1667em}+\hspace{0.1667em}J_{2k})dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i}.\end{array}\]
Our way to estimate each of $2k$ terms in (4) is mostly the same, but its realization is different for the first, the last, and the intermediate terms. Let us estimate the first term in (4):
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i}\Bigg|\\{} & \displaystyle \hspace{1em}=\Bigg|{\int _{0}^{T}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\Bigg|\\{} & \displaystyle \hspace{1em}\le \Bigg|{\int _{0}^{T/n}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\Bigg|\\{} & \displaystyle \hspace{2em}+\Bigg|{\int _{T/n}^{T}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\Bigg|\end{array}\]
Let us consider each term in detail:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{0}^{T/n}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\Bigg|\\{} & \displaystyle \hspace{1em}\le {\int _{0}^{T/n}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg|\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}\Bigg|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| {\int _{0}^{T/n}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}|J_{1}|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\\{} & \displaystyle \hspace{1em}\le \frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k-1}{\int _{0}^{T/n}}\int _{{\mathbb{R}}^{d}}\big|p_{s_{1}}(x,y_{1})-p_{\eta _{n}(s_{1})}(x,y_{1})\big|dy_{1}ds_{1}\\{} & \displaystyle \hspace{1em}\le \frac{2}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{1}{n}.\end{array}\]
Next, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{T/n}^{T}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\Bigg|\\{} & \displaystyle \hspace{1em}=\Bigg|{\int _{T/n}^{T}}{\int _{\eta _{n}(s_{1})}^{s_{1}}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\partial _{u}p_{u}(x,y_{1})\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{i=2}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}duds_{1}\Bigg|\\{} & \displaystyle \hspace{1em}\le {\int _{T/n}^{T}}{\int _{\eta _{n}(s_{1})}^{s_{1}}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg|\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\partial _{u}p_{u}(x,y_{1})\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{i=2}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)p_{T-s_{k}}(y_{k},z)\Bigg|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}\times duds_{1}\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| {\int _{T/n}^{T}}{\int _{\eta _{n}(s_{1})}^{s_{1}}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\big|\partial _{u}p_{u}(x,y_{1})\big|\Bigg(\prod \limits_{i=2}^{k}p_{s_{i}-s_{i-1}}(y_{i-1},y_{i})\Bigg)\\{} & \displaystyle \hspace{2em}\times p_{T-s_{k}}(y_{k},z)dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}duds_{1}.\end{array}\]
Integrating over $z,y_{k},y_{k-1},\dots ,y_{2}$ and then over $s_{k},s_{k-1},\dots ,s_{2}$, we derive
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{T/n}^{T}}\int _{S_{k-1,s_{1},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=2}^{k}ds_{i}ds_{1}\Bigg|\\{} & \displaystyle \hspace{1em}\le \frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k-1}{\int _{T/n}^{T}}{\int _{\eta _{n}(s_{1})}^{s_{1}}}\int _{{\mathbb{R}}^{d}}\big|\partial _{u}p_{u}(x,y_{1})\big|dy_{1}duds_{1}\\{} & \displaystyle \hspace{1em}\le C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k-1}{\int _{T/n}^{T}}{\int _{\eta _{n}(s_{1})}^{s_{1}}}\int _{{\mathbb{R}}^{d}}{u}^{-1}q_{u,x}(y_{1})dy_{1}duds_{1}\\{} & \displaystyle \hspace{1em}=C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k-1}{\int _{T/n}^{T}}{\int _{\eta _{n}(s_{1})}^{s_{1}}}{u}^{-1}duds_{1}\\{} & \displaystyle \hspace{1em}=C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k-1}\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{iT/n}^{s_{1}}}{u}^{-1}duds_{1}\\{} & \displaystyle \hspace{1em}=C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k-1}\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{\int _{u}^{(i+1)T/n}}{u}^{-1}ds_{1}du\\{} & \displaystyle \hspace{1em}\le C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{1}{n}\sum \limits_{i=1}^{n-1}{\int _{iT/n}^{(i+1)T/n}}{u}^{-1}du\\{} & \displaystyle \hspace{1em}=C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{1}{n}{\int _{T/n}^{T}}{u}^{-1}du\\{} & \displaystyle \hspace{1em}=C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{\log n}{n}.\end{array}\]
Therefore,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{1}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i}\Bigg|\\{} & \displaystyle \hspace{1em}\le 3C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{\log n}{n}.\end{array}\]
Now we are ready to estimate the last summand in (4):
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i}\Bigg|\\{} & \displaystyle \hspace{1em}=\Bigg|{\int _{0}^{T}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\Bigg|\\{} & \displaystyle \hspace{1em}\le \Bigg|{\int _{0}^{T-T/n}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\Bigg|\\{} & \displaystyle \hspace{2em}+\Bigg|{\int _{T-T/n}^{T}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\Bigg|\end{array}\]
Let us estimate each term separately. We get
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{T-T/n}^{T}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\Bigg|\\{} & \displaystyle \hspace{1em}\le {\int _{T-T/n}^{T}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg|\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}\Bigg|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| {\int _{T-T/n}^{T}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}|J_{2k}|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\\{} & \displaystyle \hspace{1em}\le \frac{2}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{1}{n}.\end{array}\]
For the other term, we obtain:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{0}^{T-T/n}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\Bigg|\\{} & \displaystyle \hspace{1em}=\Bigg|{\int _{0}^{T-T/n}}{\int _{\eta _{n}(s_{k})}^{s_{k}}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)\partial _{T-u}p_{T-u}(y_{k},z)dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}duds_{k}\Bigg|\\{} & \displaystyle \hspace{1em}\le {\int _{0}^{T-T/n}}{\int _{\eta _{n}(s_{k})}^{s_{k}}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg|\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)\partial _{T-u}p_{T-u}(y_{k},z)\Bigg|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}duds_{k}\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| {\int _{0}^{T-T/n}}{\int _{\eta _{n}(s_{k})}^{s_{k}}}\int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)\\{} & \displaystyle \hspace{2em}\times \big|\partial _{T-u}p_{T-u}(y_{k},z)\big|dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}duds_{k}.\end{array}\]
Let us rewrite this expression in the form
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \| h{\| }^{k}\| f\| \int _{S_{k-1,0,T}}\int _{{({\mathbb{R}}^{d})}^{k-1}}\Bigg(\prod \limits_{i=1}^{k-1}p_{\eta _{n}(s_{i})-\eta _{n}(s_{i-1})}(y_{i-1},y_{i})\Bigg)\\{} & \displaystyle \hspace{1em}\times {\int _{0}^{T-T/n}}{\int _{\eta _{n}(s_{k})}^{s_{k}}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{\eta _{n}(s_{k})-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})\\{} & \displaystyle \hspace{1em}\times \big|\partial _{T-u}p_{T-u}(y_{k},z)\big|dzdy_{k}duds_{k}\prod \limits_{j=1}^{k-1}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}\end{array}\]
and consider the inner integral
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{T-T/n}}{\int _{\eta _{n}(s_{k})}^{s_{k}}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{\eta _{n}(s_{k})-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})\big|\partial _{T-u}p_{T-u}(y_{k},z)\big|dzdy_{k}duds_{k}\\{} & \displaystyle \hspace{1em}=\sum \limits_{i=0}^{n-2}{\int _{iT/n}^{(i+1)T/n}}{\int _{iT/n}^{s_{k}}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{iT/n-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{T-u}p_{T-u}(y_{k},z)\big|dzdy_{k}duds_{k}\\{} & \displaystyle \hspace{1em}=\sum \limits_{i=0}^{n-2}{\int _{iT/n}^{(i+1)T/n}}{\int _{u}^{(i+1)T/n}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{iT/n-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{T-u}p_{T-u}(y_{k},z)\big|dzdy_{k}ds_{k}du\\{} & \displaystyle \hspace{1em}\le \frac{T}{n}\sum \limits_{i=0}^{n-2}{\int _{iT/n}^{(i+1)T/n}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{iT/n-\eta _{n}(s_{k-1})}(y_{k-1},y_{k})\big|\partial _{T-u}p_{T-u}(y_{k},z)\big|dzdy_{k}du\\{} & \displaystyle \hspace{1em}\le C_{T}\frac{T}{n}\sum \limits_{i=0}^{n-2}{\int _{iT/n}^{(i+1)T/n}}\int _{{\mathbb{R}}^{d}}p_{iT/n-\eta _{n}(s_{k-1})}(y_{k-1},y_{k}){(T-u)}^{-1}dy_{k}du\\{} & \displaystyle \hspace{1em}=C_{T}\frac{T}{n}\sum \limits_{i=0}^{n-2}{\int _{iT/n}^{(i+1)T/n}}{(T\hspace{0.1667em}-\hspace{0.1667em}u)}^{-1}du\hspace{0.1667em}=\hspace{0.1667em}C_{T}\frac{T}{n}{\int _{0}^{T-T/n}}{(T\hspace{0.1667em}-\hspace{0.1667em}u)}^{-1}du\hspace{0.1667em}=\hspace{0.1667em}TC_{T}\frac{\log n}{n}.\end{array}\]
Therefore, we have:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{0}^{T-T/n}}\int _{S_{k-1,0,s_{k}}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k-1}ds_{i}ds_{k}\Bigg|\\{} & \displaystyle \hspace{1em}\le C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{\log n}{n}\end{array}\]
and
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)J_{2k}dz\prod \limits_{j=1}^{k}dy_{j}\prod \limits_{i=1}^{k}ds_{i}\Bigg|\\{} & \displaystyle \hspace{1em}\le 3C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{\log n}{n}.\end{array}\]
To complete the proof, we should additionally consider the following terms in (4):
(5)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\\{} & \displaystyle \hspace{1em}\times \big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{1em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=1}^{k}ds_{r}\Bigg|\end{array}\]
and
(6)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\\{} & \displaystyle \hspace{1em}\times \big(p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})-p_{\eta _{n}(s_{j})-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{1em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=1}^{k}ds_{r}\Bigg|,\end{array}\]
where $j=\overline{2,k}$.
Consider (5) in more detail. We rewrite it in the form
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j-2}}^{s_{j}}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\Bigg|\\{} & \displaystyle \hspace{1em}\le \Bigg|{\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j-2}}^{s_{j}-T/n}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\Bigg|\\{} & \displaystyle \hspace{2em}+\Bigg|{\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j}-T/n}^{s_{j}}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\Bigg|.\end{array}\]
We estimate each term separately:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j}-T/n}^{s_{j}}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\Bigg|\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| \\{} & \displaystyle \hspace{2em}\times {\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j}-T/n}^{s_{j}}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{j}}\Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\\{} & \displaystyle \hspace{2em}\times \big|p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big|\\{} & \displaystyle \hspace{2em}\times \prod \limits_{q=1}^{j}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\\{} & \displaystyle \hspace{1em}\le \frac{2}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{1}{n}.\end{array}\]
For the other term, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|{\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j-2}}^{s_{j}-T/n}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\Bigg|\\{} & \displaystyle \hspace{1em}=\Bigg|{\int _{0}^{T}}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j-2}}^{s_{j}-T/n}}{\int _{\eta _{n}(s_{j-1})}^{s_{j-1}}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)\\{} & \displaystyle \hspace{2em}\times dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}duds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\Bigg|\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| \\{} & \displaystyle \hspace{2em}\times {\int _{0}^{T}}\hspace{-0.1667em}\hspace{-0.1667em}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}{\int _{s_{j-2}}^{s_{j}-T/n}}\hspace{-0.1667em}{\int _{\eta _{n}(s_{j-1})}^{s_{j-1}}}\int _{S_{k-j,s_{j},T}}\int _{{({\mathbb{R}}^{d})}^{j}}\big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\prod \limits_{q=1}^{j}dy_{q}\prod \limits_{r=j+1}^{k}ds_{r}duds_{j-1}ds_{j}\prod \limits_{v=1}^{j-3}ds_{v}ds_{j-2}\\{} & \displaystyle \hspace{1em}\le \| h{\| }^{k}\| f\| \\{} & \displaystyle \hspace{2em}\times {\int _{0}^{T}}\hspace{-0.1667em}\hspace{-0.1667em}\int _{S_{j-3,0,s_{j-2}}}{\int _{s_{j-2}}^{T}}\int _{S_{k-j,s_{j},T}}{\int _{0}^{s_{j}-T/n}}\hspace{-0.1667em}{\int _{\eta _{n}(s_{j-1})}^{s_{j-1}}}\int _{{({\mathbb{R}}^{d})}^{j}}\big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\prod \limits_{q=1}^{j}dy_{q}duds_{j-1}\prod \limits_{r=j+1}^{k}ds_{r}ds_{j}\prod \limits_{v=1}^{j-3}ds_{r}ds_{j-2}.\end{array}\]
Again, we consider the inner integral:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{\eta _{n}(s_{j})-T/n}}{\int _{\eta _{n}(s_{j-1})}^{s_{j-1}}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{\eta _{n}(s_{j-1})-\eta _{n}(s_{j-2})}(y_{j-2},y_{j-1})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|dy_{j}dy_{j-1}duds_{j-1}\\{} & \displaystyle \hspace{1em}=\sum \limits_{i=0}^{\eta _{n}(s_{j})n/T-2}{\int _{iT/n}^{(i+1)T/n}}{\int _{iT/n}^{s_{j-1}}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{iT/n-\eta _{n}(s_{j-2})}(y_{j-2},y_{j-1})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|dy_{j}dy_{j-1}duds_{j-1}\\{} & \displaystyle \hspace{1em}=\sum \limits_{i=0}^{\eta _{n}(s_{j})n/T-2}{\int _{iT/n}^{(i+1)T/n}}{\int _{u}^{(i+1)T/n}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{iT/n-\eta _{n}(s_{j-2})}(y_{j-2},y_{j-1})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|dy_{j}dy_{j-1}ds_{j-1}du\\{} & \displaystyle \hspace{1em}\le \frac{T}{n}\sum \limits_{i=0}^{\eta _{n}(s_{j})n/T-2}{\int _{iT/n}^{(i+1)T/n}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{iT/n-\eta _{n}(s_{j-2})}(y_{j-2},y_{j-1})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|dy_{j}dy_{j-1}du\\{} & \displaystyle \hspace{1em}\le C_{T}\frac{T}{n}\sum \limits_{i=0}^{\eta _{n}(s_{j})n/T-2}{\int _{iT/n}^{(i+1)T/n}}\int _{{\mathbb{R}}^{d}}p_{iT/n-\eta _{n}(s_{j-2})}(y_{j-2},y_{j-1}){(s_{j}-u)}^{-1}dy_{j-1}du\\{} & \displaystyle \hspace{1em}=C_{T}\frac{T}{n}\sum \limits_{i=0}^{\eta _{n}(s_{j})n/T-2}{\int _{iT/n}^{(i+1)T/n}}{(s_{j}-u)}^{-1}du=C_{T}\frac{T}{n}{\int _{0}^{\eta _{n}(s_{j})-T/n}}{(s_{j}-u)}^{-1}du.\end{array}\]
We have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{s_{j}-T/n}}{\int _{\eta _{n}(s_{j-1})}^{s_{j-1}}}\int _{{({\mathbb{R}}^{d})}^{2}}p_{\eta _{n}(s_{j-1})-\eta _{n}(s_{j-2})}(y_{j-2},y_{j-1})\\{} & \displaystyle \hspace{2em}\times \big|\partial _{s_{j}-u}p_{s_{j}-u}(y_{j-1},y_{j})\big|dy_{j}dy_{j-1}duds_{j-1}\\{} & \displaystyle \hspace{1em}\le C_{T}\frac{T}{n}{\int _{0}^{s_{j}-T/n}}{(s_{j}-u)}^{-1}du\le TC_{T}\frac{\log n}{n}.\end{array}\]
Therefore, we obtain
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\\{} & \displaystyle \hspace{2em}\times \big(p_{s_{j}-s_{j-1}}(y_{j-1},y_{j})-p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)\\{} & \displaystyle \hspace{2em}\times p_{T-s_{k}}(y_{k},z)dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=1}^{k}ds_{r}\Bigg|\\{} & \displaystyle \hspace{1em}\le 3C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{\log n}{n}.\end{array}\]
Analogously, we also have:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{S_{k,0,T}}\int _{{({\mathbb{R}}^{d})}^{k+1}}\Bigg(\prod \limits_{i=1}^{k}h(y_{i})\Bigg)f(z)\Bigg(\prod \limits_{l=1}^{j-1}p_{\eta _{n}(s_{l})-\eta _{n}(s_{l-1})}(y_{l-1},y_{l})\Bigg)\\{} & \displaystyle \hspace{2em}\times \big(p_{s_{j}-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})-p_{\eta _{n}(s_{j})-\eta _{n}(s_{j-1})}(y_{j-1},y_{j})\big)\\{} & \displaystyle \hspace{2em}\times \Bigg(\prod \limits_{m=j+1}^{k}p_{s_{m}-s_{m-1}}(y_{m-1},y_{m})\Bigg)p_{T-s_{k}}(y_{k},z)dz\prod \limits_{q=1}^{k}dy_{q}\prod \limits_{r=1}^{k}ds_{r}\Bigg|\\{} & \displaystyle \hspace{1em}\le 3C_{T}\frac{1}{(k-1)!}\| h{\| }^{k}\| f\| {T}^{k}\frac{\log n}{n}.\end{array}\]
Therefore, we finally obtain
\[\big|E_{x}\big[{\big(I_{T}(h)\big)}^{k}-{\big(I_{T,n}(h)\big)}^{k}\big]f(X_{T})\big|\le 6{k}^{2}C_{T}{T}^{k}\| h{\| }^{k}\bigg(\frac{\log n}{n}\bigg)\| f\| ,\]
which completes the proof.  □

3 Applications

3.1 Discrete approximation of the Feynman–Kac semigroup

Let X be a Brownian motion with values in ${\mathbb{R}}^{d}$. Then condition X holds with
\[q_{t,x}(y)=c_{1}{t}^{-d/2}\exp \big(-c_{2}{t}^{-1}|x-y{|}^{2}\big),\]
where $c_{1},c_{2}$ are some positive constants.
Let h be a bounded measurable function. Then, it is known (see, e.g., [6], Chapter 1) that the family of operators
\[{R_{t}^{h}}f(x)=E_{x}\big[f(X_{t})\exp \big\{\lambda I_{t}(h)\big\}\big]\]
forms a semigroup on $L_{p}({\mathbb{R}}^{d}),\hspace{2.5pt}p\ge 1$, and its generator equals
\[\mathcal{A}_{h}f=\frac{1}{2}\Delta f+\lambda hf.\]
This semigroup is called the Feynman–Kac semigroup.
Denote
\[{R_{t,n}^{h}}f(x)=E_{x}\big[f(X_{t})\exp \big\{\lambda I_{t,n}(h)\big\}\big].\]
Then, using the Taylor expansion of the exponential function and Theorem 1, we have the following statement.
Corollary 2.
For any bounded functions $f,h$ and real positive number λ, we have:
\[\big|{R_{t}^{h}}f(x)-{R_{t,n}^{h}}f(x)\big|\le C_{T,\lambda ,h}\bigg(\frac{\log n}{n}\bigg)\| f\| ,\]
where
\[C_{T,\lambda ,h}=6C_{T}\lambda \| h\| T\big(1+\lambda \| h\| T\big)\exp \big\{\lambda \| h\| T\big\}.\]
Therefore, the main result of this paper provides an approximation of the Feynman–Kac semigroup with accuracy $(\log n)/n$.

3.2 Approximation of the price of an occupation-time option

Let the price of an asset $S=\{S_{t},t\ge 0\}$ be of the form
\[S_{t}=S_{0}\exp (X_{t}),\]
where X is a one-dimensional Markov process satisfying condition X. The time spent by S in a defined set $J\subset \mathbb{R}$ (or the time spent by X in a set ${J^{\prime }}=\{x:{e}^{x}\in J\}$) from time 0 to time T is given by
\[{\int _{0}^{T}}\mathbb{I}_{\{S_{t}\in J\}}dt={\int _{0}^{T}}\mathbb{I}_{\{X_{t}\in {J^{\prime }}\}}dt.\]
We consider an occupation-time option (see [5]) whose price depends on the time spent by the process S in a set J. In contrast to the traditional barrier options, which are activated or canceled when the process S hits a defined level (barrier), the payoff of an occupation-time option depends on the time spent by the price of the asset above/below this level.
For the strike price K, the barrier L, and the knock-out rate ρ, the payoff of a down-and-out call occupation-time option is given by
\[\exp \Bigg(-\rho {\int _{0}^{T}}\mathbb{I}_{\{S_{t}\le L\}}dt\Bigg)(S_{T}-K)_{+}.\]
Then, for the risk-free interest rate r, its price is given by
\[\textbf{C}(T)=\exp (-rT)E\Bigg[\exp \Bigg(-\rho {\int _{0}^{T}}\mathbb{I}_{\{S_{t}\le L\}}dt\Bigg)(S_{T}-K)_{+}\Bigg].\]
Denote
\[\textbf{C}_{n}(T)=\exp (-rT)E\Bigg[\exp \Bigg(-\rho T/n\sum \limits_{k=0}^{n-1}\mathbb{I}_{\{S_{kT/n}\le L\}}dt\Bigg)(S_{T}-K)_{+}\Bigg].\]
We provide the following corollary of Theorem 1.
Proposition 2.
Suppose that X holds and there exists $u>1$ such that $G:=E\exp (uX_{T})=E{S_{T}^{u}}<+\infty $. Then
\[\big|\textbf{C}_{n}(T)-\textbf{C}(T)\big|\le 3\max \{C_{T,\rho },G\}\exp (-rT)\bigg(\frac{\log n}{{n}^{1-1/u}}\bigg),\]
where $C_{T,\rho }=6C_{T}\rho T(1+\rho T)\exp (\rho T)$.
Proof.
For some $N>0$, we denote
\[{\textbf{C}}^{N}(T)=\exp (-rT)E\Bigg[\exp \Bigg(-\rho {\int _{0}^{T}}\mathbb{I}_{\{S_{t}\le L\}}dt\Bigg)\big((S_{T}-K)_{+}\wedge N\big)\Bigg],\]
\[{\textbf{C}_{n}^{N}}(T)=\exp (-rT)E\Bigg[\exp \Bigg(-\rho T/n\sum \limits_{k=0}^{n-1}\mathbb{I}_{\{S_{kT/n}\le L\}}dt\Bigg)\big((S_{T}-K)_{+}\wedge N\big)\Bigg].\]
Then
\[\big|\textbf{C}_{n}(T)-\textbf{C}(T)\big|\le \big|{\textbf{C}_{n}^{N}}(T)-{\textbf{C}}^{N}(T)\big|+\big|\textbf{C}(T)-{\textbf{C}}^{N}(T)\big|+\big|\textbf{C}_{n}(T)-{\textbf{C}_{n}^{N}}(T)\big|.\]
We estimate each term separately. According to Corollary 2,
\[\big|{\textbf{C}_{n}^{N}}(T)-{\textbf{C}}^{N}(T)\big|\le NC_{T,\rho }\exp (-rT)\bigg(\frac{\log n}{n}\bigg).\]
For other terms, we have:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \big|\textbf{C}(T)-{\textbf{C}}^{N}(T)\big|+\big|\textbf{C}_{n}(T)-{\textbf{C}_{n}^{N}}(T)\big|\\{} & \displaystyle \hspace{1em}\le 2\exp (-rT)E\big[(S_{T}-K)_{+}-(S_{T}-K)_{+}\wedge N\big]\le 2\exp (-rT)E[S_{T}\mathbb{I}_{\{S_{T}>N\}}]\\{} & \displaystyle \hspace{1em}=2\exp (-rT)E\bigg[\frac{S_{T}{N}^{u-1}\mathbb{I}_{\{S_{T}>N\}}}{{N}^{u-1}}\bigg]\le \frac{2G}{{N}^{u-1}}\exp (-rT).\end{array}\]
Now, putting $N={n}^{1/u}$ completes the proof.  □
Therefore, the main result of this paper provides the approximate value $\textbf{C}_{n}(T)$ of the price of an occupation-time option $\textbf{C}(T)$ with accuracy of order $(\log n)/{n}^{1-1/u}$ for the class of processes X satisfying X and the condition $E\exp (uX_{T})<+\infty $ for some $u>1$.

Acknowledgments

The authors are deeply grateful to Arturo Kohatsu-Higa for discussion and valuable suggestions about the possible area of applications of the main result of the paper.

References

[1] 
Ganychenko, I., Kulik, A.: Rates of approximation of nonsmooth integral-type functionals of Markov processes. Mod. Stoch., Theory Appl. 2, 117–126 (2014). MR3316480. doi:10.15559/vmsta-2014.12
[2] 
Gobet, E., Labart, C.: Sharp estimates for the convergence of the density of the Euler scheme in small time. Electron. Commun. Probab. 13, 352–363 (2008). MR2415143. doi:10.1214/ECP.v13-1393
[3] 
Guerin, H., Renaud, J.-F.: Joint distribution of a spectrally negative levy process and its occupation time, with step option pricing in view. arXiv:1406.3130
[4] 
Kohatsu-Higa, A., Makhlouf, A., Ngo, H.L.: Approximations of non-smooth integral type functionals of one dimensional diffusion precesses. Stoch. Process. Appl. 124, 1881–1909 (2014). MR3170228. doi:10.1016/j.spa.2014.01.003
[5] 
Linetsky, V.: Step options. Math. Finance 9, 55–96 (1999). MR1849356. doi:10.1111/1467-9965.00063
[6] 
Sznitman, A.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998). MR1717054. doi:10.1007/978-3-662-11281-6
Reading mode PDF XML

Table of contents
  • 1 Introduction and main results
  • 2 Proof of Theorem 1
  • 3 Applications
  • Acknowledgments
  • References

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Markov processes integral functional weak approximation rates Feynman-Kac formula occupation-time option

MSC2010
60J55 60F17

Metrics
since March 2018
517

Article info
views

341

Full article
views

336

PDF
downloads

150

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 1.
Theorem 1.
Suppose that X holds. Then for each $k\in \mathbb{N}$ and any bounded function f,
\[\big|E_{x}{\big(I_{T}(h)\big)}^{k}f(X_{T})-E_{x}{\big(I_{T,n}(h)\big)}^{k}f(X_{T})\big|\le 6{k}^{2}C_{T}{T}^{k}\| h{\| }^{k}\bigg(\frac{\log n}{n}\bigg)\| f\| .\]

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy