Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 4 (2015)
  4. Linear regression by observations from m ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Linear regression by observations from mixture with varying concentrations
Volume 2, Issue 4 (2015), pp. 343–353
Daryna Liubashenko   Rostyslav Maiboroda  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA41
Pub. online: 4 December 2015      Type: Research Article      Open accessOpen Access

Received
20 October 2015
Revised
22 November 2015
Accepted
26 November 2015
Published
4 December 2015

Abstract

We consider a finite mixture model with varying mixing probabilities. Linear regression models are assumed for observed variables with coefficients depending on the mixture component the observed subject belongs to. A modification of the least-squares estimator is proposed for estimation of the regression coefficients. Consistency and asymptotic normality of the estimates is demonstrated.

References

[1] 
Autin, F., Pouet, Ch.: Test on the components of mixture densities. Stat. Risk. Model. 28(4), 389–410 (2011). MR2877572. doi:10.1524/strm.2011.1065
[2] 
Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995). MR1324786
[3] 
Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Science Publishers, Amsterdam (1998). MR1712750
[4] 
Doronin, O.V.: Lower bound for a dispersion matrix for the semiparametric estimation in a model of mixtures. Theory Probab. Math. Stat. 90, 71–85 (2015). MR3241861. doi:10.1090/tpms/950
[5] 
Grün, B., Leisch, F.: Fitting finite mixtures of linear regression models with varying & fixed effects in R. In: Rizzi, A., Vichi, M. (eds.) Compstat 2006 – Proceedings in Computational Statistics, pp. 853–860. Physica Verlag, Heidelberg, Germany (2006)
[6] 
Maiboroda, R.: Statistical Analysis of Mixtures. Kyiv University Publishers, Kyiv (2003) (in Ukrainian)
[7] 
Maiboroda, R.E., Sugakova, O.V.: Estimation and classification by observations from mixture. Kyiv University Publishers, Kyiv (2008) (in Ukrainian)
[8] 
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–205 (2012). MR2885834. doi:10.1080/10485252.2011.630076
[9] 
Maiboroda, R.E., Sugakova, O.V., Doronin, A.V.: Generalized estimating equations for mixtures with varying concentrations. Can. J. Stat. 41(2), 217–236 (2013). MR3061876. doi:10.1002/cjs.11170
[10] 
McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley–Interscience, New York (2000). MR1789474. doi:10.1002/0471721182
[11] 
Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, New York (2003). MR1958247. doi:10.1002/9780471722199
[12] 
Shcherbina, A.: Estimation of the mean value in the model of mixtures with varying concentrations. Theory Probab. Math. Stat. 84, 151–164 (2012). MR2857425. doi:10.1090/S0094-9000-2012-00866-1
[13] 
Titterington, D.M., Smith, A.F., Makov, U.E.: Analysis of Finite Mixture Distributions. Wiley, New York (1985)

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Finite mixture model linear regression mixture with varying concentrations nonparametric estimation asymptotic normality consistency

MSC2010
62J05 62G20

Metrics
since March 2018
572

Article info
views

375

Full article
views

348

PDF
downloads

182

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy