Random iterations of homeomorphisms on the circle
Volume 4, Issue 3 (2017), pp. 253–271
Pub. online: 5 October 2017
Type: Research Article
Open Access
1
KG has been supported, in part, by CNPq research grant 302880/2015-1 (Brazil). KG and ÖS thank ICERM (USA) for their hospitality and financial support.
Received
22 March 2017
22 March 2017
Revised
25 September 2017
25 September 2017
Accepted
25 September 2017
25 September 2017
Published
5 October 2017
5 October 2017
Notes
Dedicated to Professor Dmitrii S. Silvestrov on the occasion of his 70th Birthday
Abstract
We study random independent and identically distributed iterations of functions from an iterated function system of homeomorphisms on the circle which is minimal. We show how such systems can be analyzed in terms of iterated function systems with probabilities which are non-expansive on average.
References
Antonov, V.A.: Modeling of processes of cyclic evolution type. Synchronization by a random signal. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 2, 67–76 (1984). (in Russian). MR0756386
Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998). MR1723992. doi:10.1007/978-3-662-12878-7
Ávila, A., Viana, M.: Extremal Lyapunov exponents: an invariance principle and applications. Inventiones Mathematicae 181, 115–178 (2010). MR2651382. doi:10.1007/s00222-010-0243-1
Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London. Ser. A 399, 243–275 (1985). MR0799111. doi:10.1098/rspa.1985.0057
Barrientos, P.G., Ghane, F.H., Malicet, D., Sarizadeh, A.: On the chaos game of iterated function systems. Topol. Methods Nonlinear Anal. 49, 105–132 (2017). MR3635639
Breiman, L.: The strong law of large numbers for a class of Markov chains. Ann. Math. Statist. 31, 801–803 (1960). MR0117786. doi:10.1214/aoms/1177705810
Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, Inc., San Diego, CA (2001). MR1796326
Crauel, H.: Extremal exponents of random dynamical systems do not vanish. J. Dyn. Diff. Equations 2, 245–291 (1990). MR1066618. doi:10.1007/BF01048947
Furstenberg, H.: Noncommuting random products. Trans. Amer. Math. Soc. 108, 377–428 (1963). MR0163345. doi:10.2307/1993589
Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. Proc. Sympos. Pure Math. 26, 193–229 (1973). MR0352328. doi:10.1090/pspum/026/0352328
Ghys, E.: Groups acting on the circle. Enseign. Math. (2) 47, 329–407 (2001). MR1876932
Golenishcheva-Kutuzova, T., Gorodetski, A., Kleptsyn, V., Volk, D.: Translation numbers define generators of ${F_{k}^{+}}\to \mathrm{Homeo}_{+}({\mathbb{S}}^{1})$. Mosc. Math. J. 14, 291–308 (2014). MR3236495
Kleptsyn, V.A., Nal’skiĭ, M.B.: Convergence of orbits in random dynamical systems on a circle. Funct. Anal. Appl. 38, 267–282 (2004). MR2117507. doi:10.1007/s10688-005-0005-9
Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Lyapunov Exponents, pp. 56–73. Springer, (1986). MR0850070. doi:10.1007/BFb0076833
Le Jan, Y.: Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Statist. 23, 111–120 (1987). MR0877387
Malicet, D.: Random walks on Homeo$({S}^{1})$. Comm. Math. Phys. Preprint, To appear in arXiv:1412.8618
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. With a prologue by Glynn, P.W. (ed.): 2nd edn. Cambridge University Press, Cambridge (2009). MR2509253. doi:10.1017/CBO9780511626630
Navas, A.: Groups of Circle Diffeomorphisms, Translation of the 2007 Spanish edition. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (2011). MR2809110. doi:10.7208/chicago/9780226569505.001.0001
Stenflo, Ö.: A survey of average contractive iterated function systems. J. Difference Equ. Appl. 18, 1355–1380 (2012). MR2956050. doi:10.1080/10236198.2011.610793
Szarek, T., Zdunik, A.: Stability of iterated function systems on the circle. Bull. Lond. Math. Soc. 48, 365–378 (2016). MR3483074. doi:10.1112/blms/bdw013
Szarek, T., Zdunik, A.: The Central Limit Theorem for function systems on the circle. Preprint arXiv:1703.10465
Viana, M.: Lectures on Lyapunov exponents. Cambridge Studies in Advanced Mathematics, vol. 145. Cambridge University Press, Cambridge (2014). MR3289050. doi:10.1017/CBO9781139976602