The time-inhomogeneous autoregressive model AR(1) is studied, which is the process of the form ${X_{n+1}}={\alpha _{n}}{X_{n}}+{\varepsilon _{n}}$, where ${\alpha _{n}}$ are constants, and ${\varepsilon _{n}}$ are independent random variables. Conditions on ${\alpha _{n}}$ and distributions of ${\varepsilon _{n}}$ are established that guarantee the geometric recurrence of the process. This result is applied to estimate the stability of n-steps transition probabilities for two autoregressive processes ${X^{(1)}}$ and ${X^{(2)}}$ assuming that both ${\alpha _{n}^{(i)}}$, $i\in \{1,2\}$, and distributions of ${\varepsilon _{n}^{(i)}}$, $i\in \{1,2\}$, are close enough.
The main subject of the study in this paper is the simultaneous renewal time for two time-inhomogeneous Markov chains which start with arbitrary initial distributions. By a simultaneous renewal we mean the first time of joint hitting the specific set C by both processes. Under the condition of existence a dominating sequence for both renewal sequences generated by the chains and non-lattice condition for renewal probabilities an upper bound for the expectation of the simultaneous renewal time is obtained.
In this paper, we consider two time-inhomogeneous Markov chains ${X_{t}^{(l)}}$, $l\in \{1,2\}$, with discrete time on a general state space. We assume the existence of some renewal set C and investigate the time of simultaneous renewal, that is, the first positive time when the chains hit the set C simultaneously. The initial distributions for both chains may be arbitrary. Under the condition of stochastic domination and nonlattice condition for both renewal processes, we derive an upper bound for the expectation of the simultaneous renewal time. Such a bound was calculated for two time-inhomogeneous birth–death Markov chains.