The mixed model with polynomial drift of the form $X(t)=\theta \mathcal{P}(t)+\alpha W(t)+\sigma {B_{H}^{n}}(t)$ is studied, where ${B_{H}^{n}}$ is the nth-order fractional Brownian motion with Hurst index $H\in (n-1,n)$ and $n\ge 2$, independent of the Wiener process W. The polynomial function $\mathcal{P}$ is known, with degree $d(\mathcal{P})\in [1,n)$. Based on discrete observations and using the ergodic theorem estimates of H, ${\alpha ^{2}}$ and ${\sigma ^{2}}$ are given. Finally, a continuous time maximum likelihood estimator of θ is provided. Both strong consistency and asymptotic normality of the proposed estimators are established.
Finite mixtures with different regression models for different mixture components naturally arise in statistical analysis of biological and sociological data. In this paper a model of mixtures with varying concentrations is considered in which the mixing probabilities are different for different observations. A modified local linear estimation (mLLE) technique is developed to estimate the regression functions of the mixture component nonparametrically. Consistency of the mLLE is demonstrated. Performance of mLLE and a modified Nadaraya–Watson estimator (mNWE) is assessed via simulations. The results confirm that the mLLE technique overcomes the boundary effect typical to the NWE.
Stationary processes have been extensively studied in the literature. Their applications include modeling and forecasting numerous real life phenomena such as natural disasters, sales and market movements. When stationary processes are considered, modeling is traditionally based on fitting an autoregressive moving average (ARMA) process. However, we challenge this conventional approach. Instead of fitting an ARMA model, we apply an AR(1) characterization in modeling any strictly stationary processes. Moreover, we derive consistent and asymptotically normal estimators of the corresponding model parameter.
We consider a finite mixture model with varying mixing probabilities. Linear regression models are assumed for observed variables with coefficients depending on the mixture component the observed subject belongs to. A modification of the least-squares estimator is proposed for estimation of the regression coefficients. Consistency and asymptotic normality of the estimates is demonstrated.