The mixed model with polynomial drift of the form $X(t)=\theta \mathcal{P}(t)+\alpha W(t)+\sigma {B_{H}^{n}}(t)$ is studied, where ${B_{H}^{n}}$ is the nth-order fractional Brownian motion with Hurst index $H\in (n-1,n)$ and $n\ge 2$, independent of the Wiener process W. The polynomial function $\mathcal{P}$ is known, with degree $d(\mathcal{P})\in [1,n)$. Based on discrete observations and using the ergodic theorem estimates of H, ${\alpha ^{2}}$ and ${\sigma ^{2}}$ are given. Finally, a continuous time maximum likelihood estimator of θ is provided. Both strong consistency and asymptotic normality of the proposed estimators are established.
with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.
We investigate large deviation properties of the maximum likelihood drift parameter estimator for Ornstein–Uhlenbeck process driven by mixed fractional Brownian motion.
where ${B}^{H_{1}}$ and ${B}^{H_{2}}$ are two independent fractional Brownian motions with Hurst indices $H_{1}$ and $H_{2}$ satisfying the condition $\frac{1}{2}\le H_{1}<H_{2}<1$. Actually, we reduce the problem to the solution of the integral Fredholm equation of the 2nd kind with a specific weakly singular kernel depending on two power exponents. It is proved that the kernel can be presented as the product of a bounded continuous multiplier and weak singular one, and this representation allows us to prove the compactness of the corresponding integral operator. This, in turn, allows us to establish an existence–uniqueness result for the sequence of the equations on the increasing intervals, to construct accordingly a sequence of statistical estimators, and to establish asymptotic consistency.