is considered, containing as particular case the Barenblatt solutions arising, for instance, in the study of nonlinear heat equations. Alternative probabilistic representations of the Barenblatt-type solutions $u(x,t)$ are proposed. In the one-dimensional case, by means of this approach, $u(x,t)$ can be connected with the wave propagation.
The nonlocal porous medium equation considered in this paper is a degenerate nonlinear evolution equation involving a space pseudo-differential operator of fractional order. This space-fractional equation admits an explicit, nonnegative, compactly supported weak solution representing a probability density function. In this paper we analyze the link between isotropic transport processes, or random flights, and the nonlocal porous medium equation. In particular, we focus our attention on the interpretation of the weak solution of the nonlinear diffusion equation by means of random flights.