The minimax identity for a nondecreasing upper-semicontinuous utility function satisfying mild growth assumption is studied. In contrast to the classical setting, concavity of the utility function is not asumed. By considering the concave envelope of the utility function, equalities and inequalities between the robust utility functionals of an initial utility function and its concavification are obtained. Furthermore, similar equalities and inequalities are proved in the case of implementing an upper bound on the final endowment of the initial model.
For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.
with random source f. The latter is, in certain sense, a symmetric α-stable spatial white noise multiplied by some regular function σ. We define a candidate solution U to the equation via Poisson’s formula and prove that the corresponding expression is well defined at each point almost surely, although the exceptional set may depend on the particular point $(x,t)$. We further show that U is Hölder continuous in time but with probability 1 is unbounded in any neighborhood of each point where σ does not vanish. Finally, we prove that U is a generalized solution to the equation.
We consider a Cauchy problem for stochastic heat equation driven by a real harmonizable fractional stable process Z with Hurst parameter $H>1/2$ and stability index $\alpha >1$. It is shown that the approximations for its solution, which are defined by truncating the LePage series for Z, converge to the solution.
We show that if a random variable is the final value of an adapted log-Hölder continuous process, then it can be represented as a stochastic integral with respect to a fractional Brownian motion with adapted integrand. In order to establish this representation result, we extend the definition of the fractional integral.
We investigate the convergence of hitting times for jump-diffusion processes. Specifically, we study a sequence of stochastic differential equations with jumps. Under reasonable assumptions, we establish the convergence of solutions to the equations and of the moments when the solutions hit certain sets.