This paper presents some extensions of recent noncentral moderate deviation results. In the first part, the results in [Statist. Probab. Lett. 185, Paper No. 109424, 8 pp. (2022)] are generalized by considering a general Lévy process $\{S(t):t\ge 0\}$ instead of a compound Poisson process. In the second part, it is assumed that $\{S(t):t\ge 0\}$ has bounded variation and is not a subordinator; thus $\{S(t):t\ge 0\}$ can be seen as the difference of two independent nonnull subordinators. In this way, the results in [Mod. Stoch. Theory Appl. 11, 43–61] for Skellam processes are generalized.
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence to a centered Normal distribution. The notion of noncentral moderate deviations is used when the weak convergence is towards a non-Gaussian distribution. In this paper, noncentral moderate deviation results are presented for two fractional Skellam processes known in the literature (see [20]). It is established that, for the fractional Skellam process of type 2 (for which one can refer to the recent results for compound fractional Poisson processes in [3]), the convergences to zero are usually faster because one can prove suitable inequalities between rate functions.