Noncentral moderate deviations for fractional Skellam processes
Volume 11, Issue 1 (2024), pp. 43–61
Pub. online: 5 December 2023
Type: Research Article
Open Access
Received
29 July 2023
29 July 2023
Revised
3 November 2023
3 November 2023
Accepted
3 November 2023
3 November 2023
Published
5 December 2023
5 December 2023
Abstract
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence to a centered Normal distribution. The notion of noncentral moderate deviations is used when the weak convergence is towards a non-Gaussian distribution. In this paper, noncentral moderate deviation results are presented for two fractional Skellam processes known in the literature (see [20]). It is established that, for the fractional Skellam process of type 2 (for which one can refer to the recent results for compound fractional Poisson processes in [3]), the convergences to zero are usually faster because one can prove suitable inequalities between rate functions.
References
Beghin, L., Macci, C.: Large deviations for fractional Poisson processes. Stat. Probab. Lett. 83(4), 1193–1202 (2013). MR3041393. https://doi.org/10.1016/j.spl.2013.01.017
Beghin, L., Macci, C.: Asymptotic results for a multivariate version of the alternative fractional Poisson process. Stat. Probab. Lett. 129, 260–268 (2017). MR3688542. https://doi.org/10.1016/j.spl.2017.06.009
Beghin, L., Macci, C.: Non-central moderate deviations for compound fractional Poisson processes. Stat. Probab. Lett. 185, Paper No. 109424 (2022), 8 pp. MR4383208. https://doi.org/10.1016/j.spl.2022.109424
Beghin, L., Macci, C., Martinucci, B.: Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates. Mod. Stoch. Theory Appl. 8(1), 63–91 (2021). MR4235564. https://doi.org/10.15559/20-vmsta169
Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1827 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, 684–709 (2010). MR2650778. https://doi.org/10.1214/EJP.v15-762
Buchak, K., Sakhno, L.: Compositions of Poisson and gamma processes. Mod. Stoch. Theory Appl. 4(2), 161–188 (2017). MR3668780. https://doi.org/10.15559/17-VMSTA79
Buchak, K.V., Sakhno, L.M.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019). MR3824680. https://doi.org/10.1090/tpms/1064
de Acosta, A.: Large deviations for vector-valued Lévy processes. Stoch. Process. Appl. 51(1), 75–115 (1994). MR1288284. https://doi.org/10.1016/0304-4149(94)90020-5
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998). MR1619036. https://doi.org/10.1007/978-1-4612-5320-4
Garra, R., Orsingher, E., Polito, F.: State dependent fractional point processes. J. Appl. Probab. 52(1), 18–36 (2015). MR3336844. https://doi.org/10.1239/jap/1429282604
Giuliano, R., Macci, C.: Some examples of noncentral moderate deviations for sequences of real random variables. Mod. Stoch. Theory Appl. 10(2), 111–144 (2023). MR4573675. https://doi.org/10.15559/23-vmsta219
Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014). MR3244285. https://doi.org/10.1007/978-3-662-43930-2
Gupta, N., Kumar, A., Leonenko, N.: Fractional Skellam process of order k and beyond. Entropy 22(11), Paper No. 1193 (2020), 21 pp. MR4221996. https://doi.org/10.3390/e22111193
Gupta, N., Maheshwari, A.: Fractional generalizations of the compound Poisson processes (2023). Available at: arXiv:2307.12252
Kataria, K.K., Khandakar, M.: On the long-range dependence of mixed fractional Poisson process. J. Theor. Probab. 34(3), 1607–1622 (2021). MR4289896. https://doi.org/10.1007/s10959-020-01015-y
Kataria, K.K., Khandakar, M.: Fractional Skellam process of order k (2021). Available at: arXiv:2103.09187
Kataria, K.K., Khandakar, M.: Skellam and time-changed variants of the generalized fractional counting processes. Fract. Calc. Appl. Anal. 25(5), 1873–1907 (2022). MR4493600. https://doi.org/10.1007/s13540-022-00091-7
Kataria, K.K., Khandakar, M.: Time-changed space-time fractional Poisson process. Stoch. Anal. Appl. 40(2), 246–267 (2022). MR4417035. https://doi.org/10.1080/07362994.2021.1903329
Kerss, A., Leonenko, N.N., Sikorskii, A.: Fractional Skellam processes with applications to finance. Fract. Calc. Appl. Anal. 17(2), 532–551 (2014). MR3181070. https://doi.org/10.2478/s13540-014-0184-2
Macci, C., Pacchiarotti, B., Villa, E.: Asymptotic results for families of random variables having power series distributions. Mod. Stoch. Theory Appl. 9(2), 207–228 (2022). MR4420683. https://doi.org/10.15559/21-vmsta198
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
Orsingher, E., Polito, F.: The space-fractional Poisson process. Stat. Probab. Lett. 82(4), 852–858 (2012). MR2899530. https://doi.org/10.1016/j.spl.2011.12.018
Pogány, T.K., Tomovski, Ž.: Probability distribution built by Prabhakar function. Related Turán and Laguerre inequalities. Integral Transforms Spec. Funct. 27(10), 783–793 (2016). MR3544402. https://doi.org/10.1080/10652469.2016.1201817