Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 1 (2024)
  4. Noncentral moderate deviations for fract ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Noncentral moderate deviations for fractional Skellam processes
Volume 11, Issue 1 (2024), pp. 43–61
Jeonghwa Lee ORCID icon link to view author Jeonghwa Lee details   Claudio Macci ORCID icon link to view author Claudio Macci details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA235
Pub. online: 5 December 2023      Type: Research Article      Open accessOpen Access

Received
29 July 2023
Revised
3 November 2023
Accepted
3 November 2023
Published
5 December 2023

Abstract

The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence to a centered Normal distribution. The notion of noncentral moderate deviations is used when the weak convergence is towards a non-Gaussian distribution. In this paper, noncentral moderate deviation results are presented for two fractional Skellam processes known in the literature (see [20]). It is established that, for the fractional Skellam process of type 2 (for which one can refer to the recent results for compound fractional Poisson processes in [3]), the convergences to zero are usually faster because one can prove suitable inequalities between rate functions.

References

[1] 
Beghin, L., Macci, C.: Large deviations for fractional Poisson processes. Stat. Probab. Lett. 83(4), 1193–1202 (2013). MR3041393. https://doi.org/10.1016/j.spl.2013.01.017
[2] 
Beghin, L., Macci, C.: Asymptotic results for a multivariate version of the alternative fractional Poisson process. Stat. Probab. Lett. 129, 260–268 (2017). MR3688542. https://doi.org/10.1016/j.spl.2017.06.009
[3] 
Beghin, L., Macci, C.: Non-central moderate deviations for compound fractional Poisson processes. Stat. Probab. Lett. 185, Paper No. 109424 (2022), 8 pp. MR4383208. https://doi.org/10.1016/j.spl.2022.109424
[4] 
Beghin, L., Macci, C., Martinucci, B.: Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates. Mod. Stoch. Theory Appl. 8(1), 63–91 (2021). MR4235564. https://doi.org/10.15559/20-vmsta169
[5] 
Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1827 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
[6] 
Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, 684–709 (2010). MR2650778. https://doi.org/10.1214/EJP.v15-762
[7] 
Buchak, K., Sakhno, L.: Compositions of Poisson and gamma processes. Mod. Stoch. Theory Appl. 4(2), 161–188 (2017). MR3668780. https://doi.org/10.15559/17-VMSTA79
[8] 
Buchak, K.V., Sakhno, L.M.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019). MR3824680. https://doi.org/10.1090/tpms/1064
[9] 
de Acosta, A.: Large deviations for vector-valued Lévy processes. Stoch. Process. Appl. 51(1), 75–115 (1994). MR1288284. https://doi.org/10.1016/0304-4149(94)90020-5
[10] 
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998). MR1619036. https://doi.org/10.1007/978-1-4612-5320-4
[11] 
Garra, R., Orsingher, E., Polito, F.: State dependent fractional point processes. J. Appl. Probab. 52(1), 18–36 (2015). MR3336844. https://doi.org/10.1239/jap/1429282604
[12] 
Giuliano, R., Macci, C.: Some examples of noncentral moderate deviations for sequences of real random variables. Mod. Stoch. Theory Appl. 10(2), 111–144 (2023). MR4573675. https://doi.org/10.15559/23-vmsta219
[13] 
Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014). MR3244285. https://doi.org/10.1007/978-3-662-43930-2
[14] 
Gupta, N., Kumar, A., Leonenko, N.: Fractional Skellam process of order k and beyond. Entropy 22(11), Paper No. 1193 (2020), 21 pp. MR4221996. https://doi.org/10.3390/e22111193
[15] 
Gupta, N., Maheshwari, A.: Fractional generalizations of the compound Poisson processes (2023). Available at: arXiv:2307.12252
[16] 
Kataria, K.K., Khandakar, M.: On the long-range dependence of mixed fractional Poisson process. J. Theor. Probab. 34(3), 1607–1622 (2021). MR4289896. https://doi.org/10.1007/s10959-020-01015-y
[17] 
Kataria, K.K., Khandakar, M.: Fractional Skellam process of order k (2021). Available at: arXiv:2103.09187
[18] 
Kataria, K.K., Khandakar, M.: Skellam and time-changed variants of the generalized fractional counting processes. Fract. Calc. Appl. Anal. 25(5), 1873–1907 (2022). MR4493600. https://doi.org/10.1007/s13540-022-00091-7
[19] 
Kataria, K.K., Khandakar, M.: Time-changed space-time fractional Poisson process. Stoch. Anal. Appl. 40(2), 246–267 (2022). MR4417035. https://doi.org/10.1080/07362994.2021.1903329
[20] 
Kerss, A., Leonenko, N.N., Sikorskii, A.: Fractional Skellam processes with applications to finance. Fract. Calc. Appl. Anal. 17(2), 532–551 (2014). MR3181070. https://doi.org/10.2478/s13540-014-0184-2
[21] 
Macci, C., Pacchiarotti, B., Villa, E.: Asymptotic results for families of random variables having power series distributions. Mod. Stoch. Theory Appl. 9(2), 207–228 (2022). MR4420683. https://doi.org/10.15559/21-vmsta198
[22] 
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
[23] 
Orsingher, E., Polito, F.: The space-fractional Poisson process. Stat. Probab. Lett. 82(4), 852–858 (2012). MR2899530. https://doi.org/10.1016/j.spl.2011.12.018
[24] 
Pogány, T.K., Tomovski, Ž.: Probability distribution built by Prabhakar function. Related Turán and Laguerre inequalities. Integral Transforms Spec. Funct. 27(10), 783–793 (2016). MR3544402. https://doi.org/10.1080/10652469.2016.1201817

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Mittag-Leffler function inverse of stable subordinator weak convergence

MSC2010
60F10 60F05 60G22 33E12

Funding
Claudio Macci acknowledges the support of MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata (CUP E83C18000100006 and CUP E83C23000330006), of University of Rome Tor Vergata (project “Asymptotic Methods in Probability” (CUP E89C20000680005) and project “Asymptotic Properties in Probability” (CUP E83C22001780005)) and of Indam-GNAMPA.

Metrics
since March 2018
436

Article info
views

151

Full article
views

181

PDF
downloads

66

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy