Generalized fractional calculus and some models of generalized counting processes
Volume 11, Issue 4 (2024), pp. 439–458
Pub. online: 30 May 2024
Type: Research Article
Open Access
Received
3 December 2023
3 December 2023
Revised
14 March 2024
14 March 2024
Accepted
14 April 2024
14 April 2024
Published
30 May 2024
30 May 2024
Abstract
Models of generalized counting processes time-changed by a general inverse subordinator are considered, their distributions are characterized, and governing equations for them are presented. The equations are given in terms of the generalized fractional derivatives, namely, convolution-type derivatives with respect to Bernštein functions. Some particular examples are presented.
References
Beghin, L., D’Ovidio, M.: Fractional Poisson process with random drift. Electron. J. Probab. 19, 1–26 (2014) MR3304182. https://doi.org/10.1214/EJP.v19-3258
Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1826 (2009) MR2535014. https://doi.org/10.1214/EJP.v14-675
Buchak, K., Sakhno, L.: Compositions of Poisson and Gamma processes. Mod. Stoch. Theory Appl. 4(2), 161–188 (2017) MR3668780. https://doi.org/10.15559/17-VMSTA79
Buchak, K., Sakhno, L.: Properties of Poisson processes directed by compound Poisson-Gamma subordinators. Mod. Stoch. Theory Appl. 5(2), 167–189 (2018) MR3813090. https://doi.org/10.15559/18-vmsta101
Buchak, K., Sakhno, L.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019) MR3824680. https://doi.org/10.1090/tpms/1064
Chukova, S., Minkova, L.: Pólya-Aeppli of order k risk model. Commun. Stat., Simul. Comput. 44(3), 551–564 (2015) MR3257726. https://doi.org/10.1080/03610918.2013.784987
Di Crescenzo, A., Martinucci, B., Meoli, A.: A fractional counting process and its connection with the Poisson process. ALEA Lat. Am. J. Probab. Math. Stat. 13, 291–307 (2016) MR3479478
Garra, R., Orsingher, E., Scavino, M.: Some probabilistic properties of fractional point processes. Stoch. Anal. Appl. 35(4), 701–718 (2017) MR3651139. https://doi.org/10.1080/07362994.2017.1308831
Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 51 (2011) MR2800586. https://doi.org/10.1155/2011/298628
Kadankova, T., Leonenko, N., Scalas, E.: Fractional non-homogeneous Poisson and Pólya-Aeppli processes of order k and beyond. Commun. Stat., Theory Methods 52(8), 2682–2701 (2023) MR4559257. https://doi.org/10.1080/03610926.2021.1958228
Kataria, K.K., Khandakar, M.: Generalized fractional counting process. J. Theor. Probab. 35(4), 2784–2805 (2022) MR4509086. https://doi.org/10.1007/s10959-022-01160-6
Kataria, K.K., Khandakar, M.: Skellam and time-changed variants of the generalized fractional counting process. Fract. Calc. Appl. Anal. 25, 1873–1907 (2022) MR4493600. https://doi.org/10.1007/s13540-022-00091-7
Kataria, K.K., Khandakar, M., Vellaisamy, P.: Generalized counting process: its non-homogeneous and time-changed versions. Preprint arXiv:2210.03981 (2022)
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011) MR2854867. https://doi.org/10.1007/s00020-011-1918-8
Kostadinova, K., Minkova, L.: On the Poisson process of order k. Pliska Stud. Math. Bulgar. 22, 117–128 (2019) MR3203700
Leonenko, N., Scalas, E., Trinh, M.: The fractional non-homogeneous Poisson process. Stat. Probab. Lett. 120, 147–156 (2017) MR3567934. https://doi.org/10.1016/j.spl.2016.09.024
Meerschaert, M.M., Toaldo, B.: Relaxation patterns and semi-Markov dynamics. Stoch. Process. Appl. 129(8), 2850–2879 (2019) MR3980146. https://doi.org/10.1016/j.spa.2018.08.004
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011) MR2835248. https://doi.org/10.1214/EJP.v16-920
Orsingher, E., Polito, F.: The space-fractional Poisson process. Stat. Probab. Lett. 82, 852–858 (2012) MR2899530. https://doi.org/10.1016/j.spl.2011.12.018
Orsingher, E., Polito, F.: On the integral of fractional Poisson processes. Stat. Probab. Lett. 83(4), 1006–1017 (2013) MR3041370. https://doi.org/10.1016/j.spl.2012.12.016
Orsingher, E., Toaldo, B.: Counting processes with Bernštein intertimes and random jumps. J. Appl. Probab. 52, 1028–1044 (2015) MR3439170. https://doi.org/10.1239/jap/1450802751
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed ${C_{0}}$-semigroups. Potential Anal. 42, 115–140 (2015) MR3297989. https://doi.org/10.1007/s11118-014-9426-5