The paper focuses on the option price subdiffusive model under the unusual behavior of the market, when the price may not be changed for some time, which is a quite common situation in modern illiquid financial markets or during global crises. In the model, the risk-free bond motion and classical geometrical Brownian motion (GBM) are time-changed by an inverted inverse Gaussian($\mathit{IG}$) subordinator. We explore the correlation structure of the subdiffusive GBM stock returns process, discuss option pricing techniques based on the martingale option pricing method and the fractal Dupire equation, and demonstrate how it applies in the case of the $\mathit{IG}$ subordinator.
In the paper we consider time-changed Poisson processes where the time is expressed by compound Poisson-Gamma subordinators $G(N(t))$ and derive the expressions for their hitting times. We also study the time-changed Poisson processes where the role of time is played by the processes of the form $G(N(t)+at)$ and by the iteration of such processes.
In the paper we study the models of time-changed Poisson and Skellam-type processes, where the role of time is played by compound Poisson-Gamma subordinators and their inverse (or first passage time) processes. We obtain explicitly the probability distributions of considered time-changed processes and discuss their properties.