Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 4 (2024)
  4. Generalized fractional calculus and some ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Generalized fractional calculus and some models of generalized counting processes
Volume 11, Issue 4 (2024), pp. 439–458
Khrystyna Buchak   Lyudmyla Sakhno  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA254
Pub. online: 30 May 2024      Type: Research Article      Open accessOpen Access

Received
3 December 2023
Revised
14 March 2024
Accepted
14 April 2024
Published
30 May 2024

Abstract

Models of generalized counting processes time-changed by a general inverse subordinator are considered, their distributions are characterized, and governing equations for them are presented. The equations are given in terms of the generalized fractional derivatives, namely, convolution-type derivatives with respect to Bernštein functions. Some particular examples are presented.

References

[1] 
Beghin, L., D’Ovidio, M.: Fractional Poisson process with random drift. Electron. J. Probab. 19, 1–26 (2014) MR3304182. https://doi.org/10.1214/EJP.v19-3258
[2] 
Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1826 (2009) MR2535014. https://doi.org/10.1214/EJP.v14-675
[3] 
Buchak, K., Sakhno, L.: Compositions of Poisson and Gamma processes. Mod. Stoch. Theory Appl. 4(2), 161–188 (2017) MR3668780. https://doi.org/10.15559/17-VMSTA79
[4] 
Buchak, K., Sakhno, L.: Properties of Poisson processes directed by compound Poisson-Gamma subordinators. Mod. Stoch. Theory Appl. 5(2), 167–189 (2018) MR3813090. https://doi.org/10.15559/18-vmsta101
[5] 
Buchak, K., Sakhno, L.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019) MR3824680. https://doi.org/10.1090/tpms/1064
[6] 
Chukova, S., Minkova, L.: Pólya-Aeppli of order k risk model. Commun. Stat., Simul. Comput. 44(3), 551–564 (2015) MR3257726. https://doi.org/10.1080/03610918.2013.784987
[7] 
Di Crescenzo, A., Martinucci, B., Meoli, A.: A fractional counting process and its connection with the Poisson process. ALEA Lat. Am. J. Probab. Math. Stat. 13, 291–307 (2016) MR3479478
[8] 
Garra, R., Orsingher, E., Scavino, M.: Some probabilistic properties of fractional point processes. Stoch. Anal. Appl. 35(4), 701–718 (2017) MR3651139. https://doi.org/10.1080/07362994.2017.1308831
[9] 
Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 51 (2011) MR2800586. https://doi.org/10.1155/2011/298628
[10] 
Kadankova, T., Leonenko, N., Scalas, E.: Fractional non-homogeneous Poisson and Pólya-Aeppli processes of order k and beyond. Commun. Stat., Theory Methods 52(8), 2682–2701 (2023) MR4559257. https://doi.org/10.1080/03610926.2021.1958228
[11] 
Kataria, K.K., Khandakar, M.: Generalized fractional counting process. J. Theor. Probab. 35(4), 2784–2805 (2022) MR4509086. https://doi.org/10.1007/s10959-022-01160-6
[12] 
Kataria, K.K., Khandakar, M.: Skellam and time-changed variants of the generalized fractional counting process. Fract. Calc. Appl. Anal. 25, 1873–1907 (2022) MR4493600. https://doi.org/10.1007/s13540-022-00091-7
[13] 
Kataria, K.K., Khandakar, M., Vellaisamy, P.: Generalized counting process: its non-homogeneous and time-changed versions. Preprint arXiv:2210.03981 (2022)
[14] 
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011) MR2854867. https://doi.org/10.1007/s00020-011-1918-8
[15] 
Kostadinova, K., Minkova, L.: On the Poisson process of order k. Pliska Stud. Math. Bulgar. 22, 117–128 (2019) MR3203700
[16] 
Leonenko, N., Scalas, E., Trinh, M.: The fractional non-homogeneous Poisson process. Stat. Probab. Lett. 120, 147–156 (2017) MR3567934. https://doi.org/10.1016/j.spl.2016.09.024
[17] 
Meerschaert, M.M., Toaldo, B.: Relaxation patterns and semi-Markov dynamics. Stoch. Process. Appl. 129(8), 2850–2879 (2019) MR3980146. https://doi.org/10.1016/j.spa.2018.08.004
[18] 
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011) MR2835248. https://doi.org/10.1214/EJP.v16-920
[19] 
Orsingher, E., Polito, F.: The space-fractional Poisson process. Stat. Probab. Lett. 82, 852–858 (2012) MR2899530. https://doi.org/10.1016/j.spl.2011.12.018
[20] 
Orsingher, E., Polito, F.: On the integral of fractional Poisson processes. Stat. Probab. Lett. 83(4), 1006–1017 (2013) MR3041370. https://doi.org/10.1016/j.spl.2012.12.016
[21] 
Orsingher, E., Toaldo, B.: Counting processes with Bernštein intertimes and random jumps. J. Appl. Probab. 52, 1028–1044 (2015) MR3439170. https://doi.org/10.1239/jap/1450802751
[22] 
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed ${C_{0}}$-semigroups. Potential Anal. 42, 115–140 (2015) MR3297989. https://doi.org/10.1007/s11118-014-9426-5

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Time-change Poisson process generalized counting process subordinator inverse subordinator generalized fractional derivatives

MSC2010
60G50 60G51 60G55

Metrics
since March 2018
582

Article info
views

110

Full article
views

182

PDF
downloads

55

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy