Models of generalized counting processes time-changed by a general inverse subordinator are considered, their distributions are characterized, and governing equations for them are presented. The equations are given in terms of the generalized fractional derivatives, namely, convolution-type derivatives with respect to Bernštein functions. Some particular examples are presented.
In the paper we study the models of time-changed Poisson and Skellam-type processes, where the role of time is played by compound Poisson-Gamma subordinators and their inverse (or first passage time) processes. We obtain explicitly the probability distributions of considered time-changed processes and discuss their properties.