A multivariate trigonometric regression model is considered. In the paper strong consistency of the least squares estimator for amplitudes and angular frequencies is obtained for such a multivariate model on the assumption that the random noise is a homogeneous or homogeneous and isotropic Gaussian, specifically, strongly dependent random field on ${\mathbb{R}^{M}},M\ge 3$.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
We consider a multivariate functional measurement error model $AX\approx B$. The errors in $[A,B]$ are uncorrelated, row-wise independent, and have equal (unknown) variances. We study the total least squares estimator of X, which, in the case of normal errors, coincides with the maximum likelihood one. We give conditions for asymptotic normality of the estimator when the number of rows in A is increasing. Under mild assumptions, the covariance structure of the limit Gaussian random matrix is nonsingular. For normal errors, the results can be used to construct an asymptotic confidence interval for a linear functional of X.
We consider the Berkson model of logistic regression with Gaussian and homoscedastic error in regressor. The measurement error variance can be either known or unknown. We deal with both functional and structural cases. Sufficient conditions for identifiability of regression coefficients are presented.
Conditions for identifiability of the model are studied. In the case where the error variance is known, the regression parameters are identifiable if the distribution of the observed regressor is not concentrated at a single point. In the case where the error variance is not known, the regression parameters are identifiable if the distribution of the observed regressor is not concentrated at three (or less) points.
The key analytic tools are relations between the smoothed logistic distribution function and its derivatives.