A new, direct proof of the formulas for the conic intrinsic volumes of the Weyl chambers of types ${A_{n-1}}$, ${B_{n}}$ and ${D_{n}}$ is given. These formulas express the conic intrinsic volumes in terms of the Stirling numbers of the first kind and their B- and D-analogues. The proof involves an explicit determination of the internal and external angles of the faces of the Weyl chambers.
The factorial moments of any Markov branching process describe the behaviour of its probability generating function $F(t,s)$ in the neighbourhood of the point $s=1$. They are applied to solve the forward Kolmogorov equation for the critical Markov branching process with geometric reproduction of particles. The solution includes quickly convergent recurrent iterations of polynomials. The obtained results on factorial moments enable computation of statistical measures as shape and skewness. They are also applicable to the comparison between critical geometric branching and linear birth-death processes.
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.
We investigate the pricing of cliquet options in a jump-diffusion model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a drifted Lévy process entailing a Brownian diffusion component as well as compound Poisson jumps. We also derive representations for the density and distribution function of the emerging Lévy process. In this setting, we infer semi-analytic expressions for the cliquet option price by two different approaches. The first one involves the probability distribution function of the driving Lévy process whereas the second draws upon Fourier transform techniques. With view on sensitivity analysis and hedging purposes, we eventually deduce representations for several Greeks while putting emphasis on the Vega.