Simple approximations for the ruin probability in the risk model with stochastic premiums and a constant dividend strategy
Volume 7, Issue 3 (2020), pp. 245–265
Pub. online: 4 August 2020
Type: Research Article
Open Access
Received
12 March 2020
12 March 2020
Revised
29 May 2020
29 May 2020
Accepted
10 July 2020
10 July 2020
Published
4 August 2020
4 August 2020
Abstract
We deal with a generalization of the risk model with stochastic premiums where dividends are paid according to a constant dividend strategy and consider heuristic approximations for the ruin probability. To be more precise, we construct five- and three-moment analogues to the De Vylder approximation. To this end, we obtain an explicit formula for the ruin probability in the case of exponentially distributed premium and claim sizes. Finally, we analyze the accuracy of the approximations for some typical distributions of premium and claim sizes using statistical estimates obtained by the Monte Carlo methods.
References
Albrecher, H., Hartinger, J.: A risk model with multilayer dividend strategy. N. Am. Actuar. J. 11, 43–64 (2007) MR2380719. https://doi.org/10.1080/10920277.2007.10597447
Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Singapore (2010) MR2766220. https://doi.org/10.1142/9789814282536
Avram, F., Banik, A.D., Horvath, A.: Ruin probabilities by Padé’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér–Lundberg), and high precision approximations with both light and heavy tails. Eur. Actuar. J. 9, 273–299 (2019) MR3982210. https://doi.org/10.1007/s13385-018-0180-8
Badescu, A., Landriault, D.: Recursive calculation of the dividend moments in a multi-threshold risk model. N. Am. Actuar. J. 12, 74–88 (2008) MR2485710. https://doi.org/10.1080/10920277.2008.10597501
Boikov, A.V.: The Cramér–Lundberg model with stochastic premium process. Theory Probab. Appl. 47, 489–493 (2003) MR1975908. https://doi.org/10.1137/S0040585X9797987
Burnecki, K., Teuerle, M.A., Wilkowska, A.: De Vylder type approximation of the ruin probability for the insurer-reinsurer model. Math. Appl. 47, 5–24 (2019) MR3988929. https://doi.org/10.14708/ma.v47i1.6417
Chi, Y., Lin, X.S.: On the threshold dividend strategy for a generalized jump-diffusion risk model. Insur. Math. Econ. 48, 326–337 (2011) MR2820045. https://doi.org/10.1016/j.insmatheco.2010.11.006
Cossette, H., Marceau, E., Marri, F.: Constant dividend barrier in a risk model with a generalized Farlie–Gumbel–Morgenstern copula. Methodol. Comput. Appl. Probab. 13, 487–510 (2011) MR2822392. https://doi.org/10.1007/s11009-010-9168-9
Cossette, H., Marceau, E., Marri, F.: On a compound Poisson risk model with dependence and in the presence of a constant dividend barrier. Appl. Stoch. Models Bus. Ind. 30, 82–98 (2014) MR3191344. https://doi.org/10.1002/asmb.1928
Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. N. Am. Actuar. J. 2, 48–72 (1998) MR1988433. https://doi.org/10.1080/10920277.1998.10595671
Gerber, H.U., Shiu, E.S.W., Smith, N.: Methods for estimating the optimal dividend barrier and the probability of ruin. Insur. Math. Econ. 42, 243–254 (2008) MR2392086. https://doi.org/10.1016/j.insmatheco.2007.02.002
Grandell, J.: Aspects of Risk Theory. Springer, New York (1991) MR1084370. https://doi.org/10.1007/978-1-4613-9058-9
Grandell, J.: Simple approximations of ruin probabilities. Insur. Math. Econ. 26, 157–173 (2000) MR1787834. https://doi.org/10.1016/S0167-6687(99)00050-5
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963) MR0144363
Hu, X., Duan, B., Zhang, L.: De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information. Insur. Math. Econ. 76, 48–55 (2017) MR3698186. https://doi.org/10.1016/j.insmatheco.2017.06.007
Landriault, D.: Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insur. Math. Econ. 42, 31–38 (2008) MR2392066. https://doi.org/10.1016/j.insmatheco.2006.12.002
Lin, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur. Math. Econ. 42, 617–627 (2008) MR2404318. https://doi.org/10.1016/j.insmatheco.2007.06.008
Mishura, Y., Ragulina, O.: Ruin Probabilities: Smoothness, Bounds, Supermartingale Approach. ISTE Press – Elsevier, London (2016) MR3643478
Mishura, Y., Ragulina, O., Stroev, O.: Practical approaches to the estimation of the ruin probability in a risk model with additional funds. Mod. Stoch. Theory Appl. 1, 167–180 (2014) MR3316485. https://doi.org/10.15559/15-VMSTA18
Navickienė, O., Sprindys, J., Šiaulys, J.: Ruin probability for the bi-seasonal discrete time risk model with dependent claims. Mod. Stoch. Theory Appl. 6, 133–144 (2019) MR3935430. https://doi.org/10.15559/18-vmsta118
Ragulina, O.: The risk model with stochastic premiums, dependence and a threshold dividend strategy. Mod. Stoch. Theory Appl. 4, 315–351 (2017) MR3739013. https://doi.org/10.15559/17-vmsta89
Ragulina, O.: The risk model with stochastic premiums and a multi-layer dividend strategy. Mod. Stoch. Theory Appl. 6, 285–309 (2019) MR4028078. https://doi.org/10.15559/19-vmsta136
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley & Sons, Chichester (1999) MR1680267. https://doi.org/10.1002/9780470317044
Schmidli, H.: Risk Theory. Springer, Cham (2018) MR3753610. https://doi.org/10.1007/978-3-319-72005-0
Shi, Y., Liu, P., Zhang, C.: On the compound Poisson risk model with dependence and a threshold dividend strategy. Stat. Probab. Lett. 83, 1998–2006 (2013) MR3079035. https://doi.org/10.1016/j.spl.2013.05.008