Based on a discrete version of the Pollaczeck–Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
The paper deals with a generalization of the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. First of all, we derive piecewise integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. In addition, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes and find explicit formulas for the ruin probability as well as for the expected discounted dividend payments. Lastly, numerical illustrations for some multi-layer dividend strategies are presented.
The paper deals with a generalization of the risk model with stochastic premiums where dependence structures between claim sizes and inter-claim times as well as premium sizes and inter-premium times are modeled by Farlie–Gumbel–Morgenstern copulas. In addition, dividends are paid to its shareholders according to a threshold dividend strategy. We derive integral and integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. Next, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes. In particular, we find explicit formulas for the ruin probability in the model without either dividend payments or dependence as well as for the expected discounted dividend payments in the model without dependence. Finally, numerical illustrations are presented.
We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal risk model. We consider the model with independent, but not necessarily identically distributed, claim sizes and the interoccurrence times. In order to prove the main theorem, we first formulate and prove an auxiliary lemma on large values of a sum of random variables asymptotically drifted in the negative direction.
We deal with a generalization of the classical risk model when an insurance company gets additional funds whenever a claim arrives and consider some practical approaches to the estimation of the ruin probability. In particular, we get an upper exponential bound and construct an analogue to the De Vylder approximation for the ruin probability. We compare results of these approaches with statistical estimates obtained by the Monte Carlo method for selected distributions of claim sizes and additional funds.