Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 3 (2020)
  4. Simple approximations for the ruin proba ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Simple approximations for the ruin probability in the risk model with stochastic premiums and a constant dividend strategy
Volume 7, Issue 3 (2020), pp. 245–265
Olena Ragulina  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA157
Pub. online: 4 August 2020      Type: Research Article      Open accessOpen Access

Received
12 March 2020
Revised
29 May 2020
Accepted
10 July 2020
Published
4 August 2020

Abstract

We deal with a generalization of the risk model with stochastic premiums where dividends are paid according to a constant dividend strategy and consider heuristic approximations for the ruin probability. To be more precise, we construct five- and three-moment analogues to the De Vylder approximation. To this end, we obtain an explicit formula for the ruin probability in the case of exponentially distributed premium and claim sizes. Finally, we analyze the accuracy of the approximations for some typical distributions of premium and claim sizes using statistical estimates obtained by the Monte Carlo methods.

References

[1] 
Albrecher, H., Hartinger, J.: A risk model with multilayer dividend strategy. N. Am. Actuar. J. 11, 43–64 (2007) MR2380719. https://doi.org/10.1080/10920277.2007.10597447
[2] 
Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Singapore (2010) MR2766220. https://doi.org/10.1142/9789814282536
[3] 
Avram, F., Banik, A.D., Horvath, A.: Ruin probabilities by Padé’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér–Lundberg), and high precision approximations with both light and heavy tails. Eur. Actuar. J. 9, 273–299 (2019) MR3982210. https://doi.org/10.1007/s13385-018-0180-8
[4] 
Badescu, A., Landriault, D.: Recursive calculation of the dividend moments in a multi-threshold risk model. N. Am. Actuar. J. 12, 74–88 (2008) MR2485710. https://doi.org/10.1080/10920277.2008.10597501
[5] 
Beekman, J.A.: A ruin function approximation. Trans. – Soc. Actuar. 21, 41–48 (1969)
[6] 
Boikov, A.V.: The Cramér–Lundberg model with stochastic premium process. Theory Probab. Appl. 47, 489–493 (2003) MR1975908. https://doi.org/10.1137/S0040585X9797987
[7] 
Burnecki, K., Teuerle, M.A., Wilkowska, A.: De Vylder type approximation of the ruin probability for the insurer-reinsurer model. Math. Appl. 47, 5–24 (2019) MR3988929. https://doi.org/10.14708/ma.v47i1.6417
[8] 
Chi, Y., Lin, X.S.: On the threshold dividend strategy for a generalized jump-diffusion risk model. Insur. Math. Econ. 48, 326–337 (2011) MR2820045. https://doi.org/10.1016/j.insmatheco.2010.11.006
[9] 
Choi, S.K., Choi, M.H., Lee, H.S., Lee, E.Y.: New approximations of ruin probability in a risk process. Qual. Technol. Quant. Manag. 7, 377–383 (2010)
[10] 
Cossette, H., Marceau, E., Marri, F.: Constant dividend barrier in a risk model with a generalized Farlie–Gumbel–Morgenstern copula. Methodol. Comput. Appl. Probab. 13, 487–510 (2011) MR2822392. https://doi.org/10.1007/s11009-010-9168-9
[11] 
Cossette, H., Marceau, E., Marri, F.: On a compound Poisson risk model with dependence and in the presence of a constant dividend barrier. Appl. Stoch. Models Bus. Ind. 30, 82–98 (2014) MR3191344. https://doi.org/10.1002/asmb.1928
[12] 
De Finetti, B.: Su un’impostazione alternativa dell teoria colletiva del rischio. Trans. XV Int. Congr. Actuar. 2, 433–443 (1957)
[13] 
De Vylder, F.: A practical solution to the problem of ultimate ruin probability. Scand. Actuar. J. 1978, 114–119 (1978)
[14] 
Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. N. Am. Actuar. J. 2, 48–72 (1998) MR1988433. https://doi.org/10.1080/10920277.1998.10595671
[15] 
Gerber, H.U., Shiu, E.S.W., Smith, N.: Methods for estimating the optimal dividend barrier and the probability of ruin. Insur. Math. Econ. 42, 243–254 (2008) MR2392086. https://doi.org/10.1016/j.insmatheco.2007.02.002
[16] 
Grandell, J.: Aspects of Risk Theory. Springer, New York (1991) MR1084370. https://doi.org/10.1007/978-1-4613-9058-9
[17] 
Grandell, J.: Simple approximations of ruin probabilities. Insur. Math. Econ. 26, 157–173 (2000) MR1787834. https://doi.org/10.1016/S0167-6687(99)00050-5
[18] 
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963) MR0144363
[19] 
Hu, X., Duan, B., Zhang, L.: De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information. Insur. Math. Econ. 76, 48–55 (2017) MR3698186. https://doi.org/10.1016/j.insmatheco.2017.06.007
[20] 
Landriault, D.: Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insur. Math. Econ. 42, 31–38 (2008) MR2392066. https://doi.org/10.1016/j.insmatheco.2006.12.002
[21] 
Lin, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur. Math. Econ. 42, 617–627 (2008) MR2404318. https://doi.org/10.1016/j.insmatheco.2007.06.008
[22] 
Mishura, Y., Ragulina, O.: Ruin Probabilities: Smoothness, Bounds, Supermartingale Approach. ISTE Press – Elsevier, London (2016) MR3643478
[23] 
Mishura, Y., Ragulina, O., Stroev, O.: Practical approaches to the estimation of the ruin probability in a risk model with additional funds. Mod. Stoch. Theory Appl. 1, 167–180 (2014) MR3316485. https://doi.org/10.15559/15-VMSTA18
[24] 
Mishura, Y.S., Ragulina, O.Y., Stroev, O.M.: Analytic property of infinite-horizon survival probability in a risk model with additional funds. Theory Probab. Math. Stat. 91, 131–143 (2015)
[25] 
Navickienė, O., Sprindys, J., Šiaulys, J.: Ruin probability for the bi-seasonal discrete time risk model with dependent claims. Mod. Stoch. Theory Appl. 6, 133–144 (2019) MR3935430. https://doi.org/10.15559/18-vmsta118
[26] 
Ragulina, O.: The risk model with stochastic premiums, dependence and a threshold dividend strategy. Mod. Stoch. Theory Appl. 4, 315–351 (2017) MR3739013. https://doi.org/10.15559/17-vmsta89
[27] 
Ragulina, O.: The risk model with stochastic premiums and a multi-layer dividend strategy. Mod. Stoch. Theory Appl. 6, 285–309 (2019) MR4028078. https://doi.org/10.15559/19-vmsta136
[28] 
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley & Sons, Chichester (1999) MR1680267. https://doi.org/10.1002/9780470317044
[29] 
Schmidli, H.: Risk Theory. Springer, Cham (2018) MR3753610. https://doi.org/10.1007/978-3-319-72005-0
[30] 
Shi, Y., Liu, P., Zhang, C.: On the compound Poisson risk model with dependence and a threshold dividend strategy. Stat. Probab. Lett. 83, 1998–2006 (2013) MR3079035. https://doi.org/10.1016/j.spl.2013.05.008

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Risk model with stochastic premiums constant dividend strategy ruin probability net profit condition De Vylder approximation Monte Carlo method

MSC2010
91B30 60G51

Metrics
since March 2018
923

Article info
views

579

Full article
views

531

PDF
downloads

126

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy