Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates
Volume 8, Issue 1 (2021), pp. 63–91
Pub. online: 21 December 2020
Type: Research Article
Open Access
Received
3 September 2020
3 September 2020
Revised
12 November 2020
12 November 2020
Accepted
4 December 2020
4 December 2020
Published
21 December 2020
21 December 2020
Abstract
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. This kind of processes are useful in the study of chain molecular diffusions. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of the random variables of the process. Moreover we study independent random time-changes with the inverse of the stable subordinator, the stable subordinator and the tempered stable subordinator. We also present some asymptotic results in the fashion of large deviations. These results give some generalizations of those presented in [Journal of Statistical Physics 154 (2014), 1352–1364].
References
Beghin, L.: On fractional tempered stable processes and their governing differential equations. J. Comput. Phys. 293, 29–39 (2015). MR3342454. https://doi.org/10.1016/j.jcp.2014.05.026
Beghin, L., Macci, C.: Fractional discrete processes: compound and mixed Poisson representations. J. Appl. Probab. 51, 19–36 (2014). MR3189439. https://doi.org/10.1239/jap/1395771411
Beghin, L., Orsingher, E.: Population processes sampled at random times. J. Stat. Phys. 163, 1–21 (2016). MR3472091. https://doi.org/10.1007/s10955-016-1475-2
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000). https://doi.org/10.1029/2000WR900031
Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 35, 368–370 (1949). MR0030151. https://doi.org/10.1073/pnas.35.7.368
Conolly, B.W., Parthasarathy, P.R., Dharmaraja, S.: A chemical queue. Math. Sci. 22, 83–91 (1997). MR1484360
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer (1998). MR1619036. https://doi.org/10.1007/978-1-4612-5320-4
Di Crescenzo, A., Iuliano, A., Martinucci, B.: On a bilateral birth-death process with alternating rates. Ric. Mat. 61, 157–169 (2012). MR2929753. https://doi.org/10.1007/s11587-011-0122-0
Di Crescenzo, A., Martinucci, B., Zacks, S.: Compound Poisson process with a Poisson subordinator. J. Appl. Probab. 52, 360–374 (2015). MR3372080. https://doi.org/10.1239/jap/1437658603
Di Crescenzo, A., Macci, C., Martinucci, B.: Asymptotic results for random walks in continuous time with alternating rates. J. Stat. Phys. 154, 1352–1364 (2014). MR3176411. https://doi.org/10.1007/s10955-014-0928-8
Ding, X., Giesecke, K., Tomecek, P.I.: Time-changed birth processes and multiname credit derivatives. Oper. Res. 57, 990–1005 (2009). MR2561338. https://doi.org/10.1287/opre.1080.0652
D’Ovidio, M., Orsingher, E., Toaldo, B.: Time-changed processes governed by space-time fractional telegraph equations. Stoch. Anal. Appl. 32, 1009–1045 (2014). MR3270693. https://doi.org/10.1080/07362994.2014.962046
Gajda, J., Magdziarz, M.: Large deviations for subordinated Brownian motion and applications. Stat. Probab. Lett. 88, 149–156 (2014). MR3178345. https://doi.org/10.1016/j.spl.2014.02.003
Hahn, M.G., Kobayashi, K., Umarov, S.: Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Am. Math. Soc. 139, 691–705 (2011). MR2736349. https://doi.org/10.1090/S0002-9939-2010-10527-0
Houdré, C., Kawai, R.: On fractional tempered stable motion. Stoch. Process. Appl. 116, 1161–1184 (2006). MR2250807. https://doi.org/10.1016/j.spa.2006.01.008
Iksanov, A., Kabluchko, Z., Marynych, A., Shevchenko, G.: Fractionally integrated inverse stable subordinators. Stoch. Process. Appl. 127, 80–106 (2017). MR3575536. https://doi.org/10.1016/j.spa.2016.06.001
Kerss, A., Leonenko, N.N., Sikorskii, A.: Fractional Skellam processes with applications to finance. Fract. Calc. Appl. Anal. 17, 532–551 (2014). MR3181070. https://doi.org/10.2478/s13540-014-0184-2
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier (2006). MR2218073
Kumar, A., Nane, E., Vellaisamy, P.: Time-changed Poisson processes. Stat. Probab. Lett. 81, 1899–1910 (2011). MR2845907. https://doi.org/10.1016/j.spl.2011.08.002
Magdziarz, M., Schilling, R.L.: Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Am. Math. Soc. 143, 4485–4501 (2015). MR3373947. https://doi.org/10.1090/proc/12588
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 1–16 (2013). MR3049524. https://doi.org/10.1051/mmnp/20138201
Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2004). MR2027298. https://doi.org/10.1007/s00440-003-0309-8
Pacchiarotti, B.: Some large deviations principles for time-changed Gaussian processes. Lith. Math. J. 60, 513–529 (2020). MR4174665. https://doi.org/10.1007/s10986-020-09494-6
Podlubny, I.: Fractional Differential Equations. Academic Press (1999). MR1658022
Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015). MR3342453. https://doi.org/10.1016/j.jcp.2014.04.024
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). MR1739520
Schilling, R.L.: Subordination in the sense of Bochner and a related functional calculus. J. Aust. Math. Soc. Ser. A 64, 368–396 (1998). MR1623282. https://doi.org/10.1017/S1446788700039239
Stockmayer, W.H., Gobush, W., Norvich, R.: Local-jump models for chain dynamics. Pure Appl. Chem. 26, 555–561 (1971). https://doi.org/10.1351/pac197126030537
Tarabia, A.M.K.: Analysis of random walks with an absorbing barrier and chemical rule. J. Comput. Appl. Math. 225, 612–620 (2009). MR2494729. https://doi.org/10.1016/j.cam.2008.08.043
Tarabia, A.M.K., El-Baz, A.H.: Transient solution of a random walk with chemical rule. Phys. A 382, 430–438 (2007). https://doi.org/10.1016/j.physa.2007.04.022
Tarabia, A.M.K., Takagi, H., El-Baz, A.H.: Transient solution of a non-empty chemical queueing system. Math. Methods Oper. Res. 70, 77–98 (2009). MR2529426. https://doi.org/10.1007/s00186-008-0232-y
Wang, W., Chen, Z.: Large deviations for subordinated fractional Brownian motion and applications. J. Math. Anal. Appl. 458, 1678–1692 (2018). MR3724748. https://doi.org/10.1016/j.jmaa.2017.10.035