In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.
The problem of (pathwise) large deviations for conditionally continuous Gaussian processes is investigated. The theory of large deviations for Gaussian processes is extended to the wider class of random processes – the conditionally Gaussian processes. The estimates of level crossing probability for such processes are given as an application.
We investigate large deviation properties of the maximum likelihood drift parameter estimator for Ornstein–Uhlenbeck process driven by mixed fractional Brownian motion.