This paper presents some extensions of recent noncentral moderate deviation results. In the first part, the results in [Statist. Probab. Lett. 185, Paper No. 109424, 8 pp. (2022)] are generalized by considering a general Lévy process $\{S(t):t\ge 0\}$ instead of a compound Poisson process. In the second part, it is assumed that $\{S(t):t\ge 0\}$ has bounded variation and is not a subordinator; thus $\{S(t):t\ge 0\}$ can be seen as the difference of two independent nonnull subordinators. In this way, the results in [Mod. Stoch. Theory Appl. 11, 43–61] for Skellam processes are generalized.
Suitable families of random variables having power series distributions are considered, and their asymptotic behavior in terms of large (and moderate) deviations is studied. Two examples of fractional counting processes are presented, where the normalizations of the involved power series distributions can be expressed in terms of the Prabhakar function. The first example allows to consider the counting process in [Integral Transforms Spec. Funct. 27 (2016), 783–793], the second one is inspired by a model studied in [J. Appl. Probab. 52 (2015), 18–36].
In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.
The problem of (pathwise) large deviations for conditionally continuous Gaussian processes is investigated. The theory of large deviations for Gaussian processes is extended to the wider class of random processes – the conditionally Gaussian processes. The estimates of level crossing probability for such processes are given as an application.
We investigate large deviation properties of the maximum likelihood drift parameter estimator for Ornstein–Uhlenbeck process driven by mixed fractional Brownian motion.