Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 3 (2022)
  4. Gaussian Volterra processes with power-t ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Gaussian Volterra processes with power-type kernels. Part I
Volume 9, Issue 3 (2022), pp. 313–338
Yuliya Mishura ORCID icon link to view author Yuliya Mishura details   Sergiy Shklyar ORCID icon link to view author Sergiy Shklyar details  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA205
Pub. online: 27 April 2022      Type: Research Article      Open accessOpen Access

Received
30 November 2021
Revised
13 February 2022
Accepted
21 March 2022
Published
27 April 2022

Abstract

The stochastic process of the form
\[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\]
is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.

References

[1] 
Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 92(2), 766–801 (2001) MR1849177. https://doi.org/10.1214/aop/1008956692
[2] 
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian process. Stat. Probab. Lett. 94, 230–235 (2014) MR3257384. https://doi.org/10.1016/j.spl.2014.07.030
[3] 
Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002) MR1920153
[4] 
Mishura, Yu., Shevchenko, G., Shklyar, S.: Gaussian processes with Volterra kernels. In: Silvestrov, S., Malyarenko, A., Rancic, M. (eds.) Stochastic Processes, Stochastic Methods and Engineering Mathematics. Springer (2022). (to appear). arxiv:2001.03405
[5] 
Mishura, Yu.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008) MR2378138. https://doi.org/10.1007/978-3-540-75873-0
[6] 
Mishura, Yu.S., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian Processes. ISTE, London; Elsevier, Oxford (2018) MR3793191
[7] 
Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion. Bernoulli 5(4), 571–587 (1999) MR1704556. https://doi.org/10.2307/3318691
[8] 
Sottinen, T., Viitasaari, L.: Stochastic analysis of Gaussian processes via Fredholm representation. Int. J. Stoch. Anal. 2016, Article ID 8694365 (2016) MR3536393. https://doi.org/10.1155/2016/8694365

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Gaussian Volterra processes fractional Brownian motion Hölder continuity quasi-helix property

MSC2010
60G15 60G17 60G18 60G22

Metrics
since March 2018
733

Article info
views

357

Full article
views

387

PDF
downloads

132

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy