Gaussian Volterra processes with power-type kernels. Part I
Volume 9, Issue 3 (2022), pp. 313–338
Pub. online: 27 April 2022
Type: Research Article
Open Access
Received
30 November 2021
30 November 2021
Revised
13 February 2022
13 February 2022
Accepted
21 March 2022
21 March 2022
Published
27 April 2022
27 April 2022
Abstract
The stochastic process of the form
\[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\]
is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.References
Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 92(2), 766–801 (2001) MR1849177. https://doi.org/10.1214/aop/1008956692
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian process. Stat. Probab. Lett. 94, 230–235 (2014) MR3257384. https://doi.org/10.1016/j.spl.2014.07.030
Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002) MR1920153
Mishura, Yu., Shevchenko, G., Shklyar, S.: Gaussian processes with Volterra kernels. In: Silvestrov, S., Malyarenko, A., Rancic, M. (eds.) Stochastic Processes, Stochastic Methods and Engineering Mathematics. Springer (2022). (to appear). arxiv:2001.03405
Mishura, Yu.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008) MR2378138. https://doi.org/10.1007/978-3-540-75873-0
Mishura, Yu.S., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian Processes. ISTE, London; Elsevier, Oxford (2018) MR3793191
Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion. Bernoulli 5(4), 571–587 (1999) MR1704556. https://doi.org/10.2307/3318691
Sottinen, T., Viitasaari, L.: Stochastic analysis of Gaussian processes via Fredholm representation. Int. J. Stoch. Anal. 2016, Article ID 8694365 (2016) MR3536393. https://doi.org/10.1155/2016/8694365