A new modified Φ-Sobolev inequality for canonical ${L^{2}}$-Lévy processes, which are hybrid cases of the Brownian motion and pure jump-Lévy processes, is developed. Existing results included only a part of the Brownian motion process and pure jump processes. A generalized version of the Φ-Sobolev inequality for the Poisson and Wiener spaces is derived. Furthermore, the theorem can be applied to obtain concentration inequalities for canonical Lévy processes. In contrast to the measure concentration inequalities for the Brownian motion alone or pure jump Lévy processes alone, the measure concentration inequalities for canonical Lévy processes involve Lambert’s W-function. Examples of inequalities are also presented, such as the supremum of Lévy processes in the case of mixed Brownian motion and Poisson processes.
The chaos expansion of a random variable with uniform distribution is given. This decomposition is applied to analyze the behavior of each chaos component of the random variable $\log \zeta $ on the so-called critical line, where ζ is the Riemann zeta function. This analysis gives a better understanding of a famous theorem by Selberg.
In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus.
This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus under the assumption that the underlying asset and interest rate both evolve from a stochastic volatility model and a stochastic interest rate model, respectively. Therefore, it integrates the recent developments in the Malliavin calculus for the computation of Greeks: Delta, Vega, and Rho and it extends the method slightly. The main results show that Malliavin calculus allows a running Monte Carlo (MC) algorithm to present numerical implementations and to illustrate its effectiveness. The main advantage of this method is that once the algorithms are constructed, they can be used for numerous types of option, even if their payoff functions are not differentiable.
Our aim in this paper is to establish some strong stability properties of a solution of a stochastic differential equation driven by a fractional Brownian motion for which the pathwise uniqueness holds. The results are obtained using Skorokhod’s selection theorem.