Power law in Sandwiched Volterra Volatility model
Volume 11, Issue 2 (2024), pp. 169–194
Pub. online: 23 January 2024
Type: Research Article
Open Access
Received
2 November 2023
2 November 2023
Revised
11 January 2024
11 January 2024
Accepted
12 January 2024
12 January 2024
Published
23 January 2024
23 January 2024
Abstract
The paper presents an analytical proof demonstrating that the Sandwiched Volterra Volatility (SVV) model is able to reproduce the power-law behavior of the at-the-money implied volatility skew, provided the correct choice of the Volterra kernel. To obtain this result, the second-order Malliavin differentiability of the volatility process is assessed and the conditions that lead to explosive behavior in the Malliavin derivative are investigated. As a supplementary result, a general Malliavin product rule is proved.
References
Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11(4), 571–589 (2007). MR2335834. https://doi.org/10.1007/s00780-007-0049-1
Andersen, L.B.G., Piterbarg, V.V.: Moment explosions in stochastic volatility models. Finance Stoch. 11(1), 29–50 (2006). MR2284011. https://doi.org/10.1007/s00780-006-0011-7
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014). https://doi.org/10.1016/j.spl.2014.07.030. MR3257384
Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016). MR3494612. https://doi.org/10.1080/14697688.2015.1099717
Biagini, F., Guasoni, P., Pratelli, M.: Mean-variance hedging for stochastic volatility models. Math. Finance 10(2), 109–123 (2000). MR1802593. https://doi.org/10.1111/1467-9965.00084
Bollerslev, T., Mikkelsen, H.O.: Modeling and pricing long memory in stock market volatility. J. Econom. 73(1), 151–184 (1996). https://doi.org/10.1016/0304-4076(95)01736-4
Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8(4), 291–323 (1998). MR1645101. https://doi.org/10.1111/1467-9965.00057
Delemotte, J., De Marco, S., Segonne, F.: Yet another analysis of the SP500 at-the-money skew: Crossover of different power-law behaviours. SSRN Electron. J. (2023). https://doi.org/10.2139/ssrn.4428407
Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Option pricing in Volterra sandwiched volatility model. arXiv:2209.10688 (2022). https://doi.org/10.48550/ARXIV.2209.10688
Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Drift-implicit Euler scheme for sandwiched processes driven by Hölder noises. Numer. Algorithms 93(2), 459–491 (2023). MR4586188. https://doi.org/10.1007/s11075-022-01424-6
Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Sandwiched SDEs with unbounded drift driven by Hölder noises. Adv. Appl. Probab. 55(3), 927–964 (2023). MR4624032. https://doi.org/10.1017/apr.2022.56
Di Nunno, G., Kubilius, K., Mishura, Y., Yurchenko-Tytarenko, A.: From constant to rough: A survey of continuous volatility modeling. Mathematics 11(19), 4201 (2023). https://doi.org/10.3390/math11194201
Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, 1st edn. Springer, Berlin, Heidelberg (2009). MR2460554
Ding, Z., Granger, C.W.J.: Modeling volatility persistence of speculative returns: A new approach. J. Econom. 73(1), 185–215 (1996). MR1410004. https://doi.org/10.1016/0304-4076(95)01737-2
Ding, Z., Granger, C.W.J., Engle, R.F.: A long memory property of stock market returns and a new model. J. Empir. Finance 1(1), 83–106 (1993). https://doi.org/10.1016/0927-5398(93)90006-d
Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K.: Maturity cycles in implied volatility. Finance Stoch. 8(4) (2004). MR2212113. https://doi.org/10.1007/s00780-004-0126-7
Fukasawa, M.: Volatility has to be rough. Quant. Finance 21(1), 1–8 (2021). MR4188876. https://doi.org/10.1080/14697688.2020.1825781
Funahashi, H., Kijima, M.: Does the Hurst index matter for option prices under fractional volatility? Ann. Finance 13(1), 55–74 (2017). MR3623799. https://doi.org/10.1007/s10436-016-0289-1
Funahashi, H., Kijima, M.: A solution to the time-scale fractional puzzle in the implied volatility. Fractal Fract. 1(1), 14 (2017). https://doi.org/10.3390/fractalfract1010014
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018). MR3805308. https://doi.org/10.1080/14697688.2017.1393551
Hu, Y., Nualart, D., Song, X.: A singular stochastic differential equation driven by fractional Brownian motion. Stat. Probab. Lett. 78(14), 2075–2085 (2008). MR2458016. https://doi.org/10.1016/j.spl.2008.01.080
Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Volume I: Martingales and Littlewood-Paley theory, 1st edn. Springer, Cham, Switzerland (2016). MR3617205
Lee, R.W.: Implied volatility: Statics, dynamics, and probabilistic interpretation. In: Recent Advances in Applied Probability, pp. 241–268. Kluwer Academic Publishers, Boston (2006). MR2102956. https://doi.org/10.1007/0-387-23394-6_11
Lobato, I.N., Velasco, C.: Long memory in stock-market trading volume. J. Bus. Econ. Stat. 18(4), 410–427 (2000). MR1802045. https://doi.org/10.2307/1392223
Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin/Heidelberg (2006). MR2200233
Ocone, D.L., Karatzas, I.: A generalized Clark representation formula, with application to optimal portfolios. Stoch. Stoch. Rep. 34(3–4), 187–220 (1991). MR1124835. https://doi.org/10.1080/17442509108833682
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin, Heidelberg (1999). MR1725357. https://doi.org/10.1007/978-3-662-06400-9
Rough Volatility Literature. https://sites.google.com/site/roughvol/home/rough-volatility-literature?authuser=0. Accessed: 2023-10-30.
Willinger, W., Taqqu, M.S., Teverovsky, V.: Stock market prices and long-range dependence. Finance Stoch. 3(1), 1–13 (1999). https://doi.org/10.1007/s007800050049