The chaos expansion of a random variable with uniform distribution is given. This decomposition is applied to analyze the behavior of each chaos component of the random variable $\log \zeta $ on the so-called critical line, where ζ is the Riemann zeta function. This analysis gives a better understanding of a famous theorem by Selberg.
Explicit solutions for a class of linear backward stochastic differential equations (BSDE) driven by Gaussian Volterra processes are given. These processes include the multifractional Brownian motion and the multifractional Ornstein-Uhlenbeck process. By an Itô formula, proven in the context of Malliavin calculus, the BSDE is associated to a linear second order partial differential equation with terminal condition whose solution is given by a Feynman-Kac type formula.
In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus.
This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus under the assumption that the underlying asset and interest rate both evolve from a stochastic volatility model and a stochastic interest rate model, respectively. Therefore, it integrates the recent developments in the Malliavin calculus for the computation of Greeks: Delta, Vega, and Rho and it extends the method slightly. The main results show that Malliavin calculus allows a running Monte Carlo (MC) algorithm to present numerical implementations and to illustrate its effectiveness. The main advantage of this method is that once the algorithms are constructed, they can be used for numerous types of option, even if their payoff functions are not differentiable.
We consider the Black–Scholes model of financial market modified to capture the stochastic nature of volatility observed at real financial markets. For volatility driven by the Ornstein–Uhlenbeck process, we establish the existence of equivalent martingale measure in the market model. The option is priced with respect to the minimal martingale measure for the case of uncorrelated processes of volatility and asset price, and an analytic expression for the price of European call option is derived. We use the inverse Fourier transform of a characteristic function and the Gaussian property of the Ornstein–Uhlenbeck process.