The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence to a centered Normal distribution. The notion of noncentral moderate deviations is used when the weak convergence is towards a non-Gaussian distribution. In this paper, noncentral moderate deviation results are presented for two fractional Skellam processes known in the literature (see [20]). It is established that, for the fractional Skellam process of type 2 (for which one can refer to the recent results for compound fractional Poisson processes in [3]), the convergences to zero are usually faster because one can prove suitable inequalities between rate functions.
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. This kind of processes are useful in the study of chain molecular diffusions. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of the random variables of the process. Moreover we study independent random time-changes with the inverse of the stable subordinator, the stable subordinator and the tempered stable subordinator. We also present some asymptotic results in the fashion of large deviations. These results give some generalizations of those presented in [Journal of Statistical Physics 154 (2014), 1352–1364].
In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.
The problem of (pathwise) large deviations for conditionally continuous Gaussian processes is investigated. The theory of large deviations for Gaussian processes is extended to the wider class of random processes – the conditionally Gaussian processes. The estimates of level crossing probability for such processes are given as an application.
We investigate large deviation properties of the maximum likelihood drift parameter estimator for Ornstein–Uhlenbeck process driven by mixed fractional Brownian motion.