A limit theorem for singular stochastic differential equations        
        
    
        Volume 3, Issue 3 (2016), pp. 223–235
            
    
                    Pub. online: 8 November 2016
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
19 September 2016
                                    19 September 2016
                Revised
23 October 2016
                                    23 October 2016
                Accepted
23 October 2016
                                    23 October 2016
                Published
8 November 2016
                    8 November 2016
Abstract
We study the weak limits of solutions to SDEs 
 
where the sequence $\{a_{n}\}$ converges in some sense to $(c_{-}\mathbb{1}_{x<0}+c_{+}\mathbb{1}_{x>0})/x+\gamma \delta _{0}$. Here $\delta _{0}$ is the Dirac delta function concentrated at zero. A limit of $\{X_{n}\}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.
            References
 Barlow, M.T., Pitman, J., Yor, M.: On Walsh’s Brownian motions. Sémin. Probab. Strasbourg 23, 275–293 (1989). MR1022917. doi:10.1007/BFb0083979 
 Blei, S.: On symmetric and skew Bessel processes. Stoch. Process. Appl. 122(9), 3262–3287 (2012). MR2946442. doi:10.1016/j.spa.2012.05.008 
 Engelbert, H.J., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (Part III). Math. Nachr. 151(1), 149–197 (1991). MR1121203. doi:10.1002/mana.19911510111 
 Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab. 9(2), 309–313 (1981). MR0606993. doi:10.1214/aop/1176994472 
 Knight, F.B.: Essentials of Brownian Motion and Diffusion, vol. 18. American Mathematical Society (1981). MR0613983 
 Kulinich, G., Kushnirenko, S., Mishura, Y.: Asymptotic behavior of integral functionals of unstable solutions of one-dimensional Itô stochastic differential equations. Theory Probab. Math. Stat. 89, 101–114 (2014). MR3235178. doi:10.1090/s0094-9000-2015-00938-8 
 Kulinich, G.L., Kas’kun, E.P.: On the asymptotic behavior of solutions of a certain class of one-dimensional Ito stochastic differential equations. Theory Probab. Math. Stat. 56, 97–106 (1998). MR1791858
 Le Gall, J.-F.: Applications du temps local aux équations différentielles stochastiques unidimensionnelles. In: Séminaire de Probabilités XVII 1981/1982, pp. 15–31. Springer (1983). MR0770393. doi:10.1007/BFb0068296 
 Lejay, A.: On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006). MR2280299. doi:10.1214/154957807000000013 
 Piera, F.J., Mazumdar, R.R.: Comparison results for reflected jump-diffusions in the orthant with variable reflection directions and stability applications. Electron. J. Probab. 13(61), 1886–1908 (2008). MR2453549. doi:10.1214/EJP.v13-569 
 Pilipenko, A.Y., Prykhodko, Y.E.: On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point. Ukr. Math. J. 67(4), 564–583 (2015). MR3432463. doi:10.1007/s11253-015-1101-5 
 Portenko, N.I.: Generalized diffusion processes. In: Maruyama, G., Prokhorov, J.V. (eds.) Proceedings of the Third Japan–USSR Symposium on Probability Theory. Lecture Notes in Mathematics, vol. 550, pp. 500–523. Springer (1976). MR0440716. doi:10.1007/BFb0077511 
 Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenchaften A series of comprehensive studies in mathematics. Springer (1999). MR1725357. doi:10.1007/978-3-662-06400-9 
 Skorokhod, A.V.: Studies in the Theory of Random Processes. Adiwes International Series in Mathematics. Addison–Wesley Publishing Company (1965). MR0185620 
 
            