Models of generalized counting processes time-changed by a general inverse subordinator are considered, their distributions are characterized, and governing equations for them are presented. The equations are given in terms of the generalized fractional derivatives, namely, convolution-type derivatives with respect to Bernštein functions. Some particular examples are presented.
In the paper we consider time-changed Poisson processes where the time is expressed by compound Poisson-Gamma subordinators $G(N(t))$ and derive the expressions for their hitting times. We also study the time-changed Poisson processes where the role of time is played by the processes of the form $G(N(t)+at)$ and by the iteration of such processes.