The paper focuses on the option price subdiffusive model under the unusual behavior of the market, when the price may not be changed for some time, which is a quite common situation in modern illiquid financial markets or during global crises. In the model, the risk-free bond motion and classical geometrical Brownian motion (GBM) are time-changed by an inverted inverse Gaussian($\mathit{IG}$) subordinator. We explore the correlation structure of the subdiffusive GBM stock returns process, discuss option pricing techniques based on the martingale option pricing method and the fractal Dupire equation, and demonstrate how it applies in the case of the $\mathit{IG}$ subordinator.
Models of generalized counting processes time-changed by a general inverse subordinator are considered, their distributions are characterized, and governing equations for them are presented. The equations are given in terms of the generalized fractional derivatives, namely, convolution-type derivatives with respect to Bernštein functions. Some particular examples are presented.
In the paper we consider time-changed Poisson processes where the time is expressed by compound Poisson-Gamma subordinators $G(N(t))$ and derive the expressions for their hitting times. We also study the time-changed Poisson processes where the role of time is played by the processes of the form $G(N(t)+at)$ and by the iteration of such processes.