General models of random fields on the sphere associated with nonlocal equations in time and space are studied. The properties of the corresponding angular power spectrum are discussed and asymptotic results in terms of random time changes are found.
In the paper we consider higher-order partial differential equations from the class of linear dispersive equations. We investigate solutions to these equations subject to random initial conditions given by harmonizable φ-sub-Gaussian processes. The main results are the bounds for the distributions of the suprema for solutions. We present the examples of processes for which the assumptions of the general result are verified and bounds are written in the explicit form. The main result is also specified for the case of Gaussian initial condition.
Fractional equations governing the distribution of reflecting drifted Brownian motions are presented. The equations are expressed in terms of tempered Riemann–Liouville type derivatives. For these operators a Marchaud-type form is obtained and a Riesz tempered fractional derivative is examined, together with its Fourier transform.
A random flight on a plane with non-isotropic displacements at the moments of direction changes is considered. In the case of exponentially distributed flight lengths a Gaussian limit theorem is proved for the position of a particle in the scheme of series when jump lengths and non-isotropic displacements tend to zero. If the flight lengths have a folded Cauchy distribution the limiting distribution of the particle position is a convolution of the circular bivariate Cauchy distribution with a Gaussian law.