The mixed model with polynomial drift of the form $X(t)=\theta \mathcal{P}(t)+\alpha W(t)+\sigma {B_{H}^{n}}(t)$ is studied, where ${B_{H}^{n}}$ is the nth-order fractional Brownian motion with Hurst index $H\in (n-1,n)$ and $n\ge 2$, independent of the Wiener process W. The polynomial function $\mathcal{P}$ is known, with degree $d(\mathcal{P})\in [1,n)$. Based on discrete observations and using the ergodic theorem estimates of H, ${\alpha ^{2}}$ and ${\sigma ^{2}}$ are given. Finally, a continuous time maximum likelihood estimator of θ is provided. Both strong consistency and asymptotic normality of the proposed estimators are established.
In this paper the study of a three-parametric class of Gaussian Volterra processes is continued. This study was started in Part I of the present paper. The class under consideration is a generalization of a fractional Brownian motion that is in fact a one-parametric process depending on Hurst index H. On the one hand, the presence of three parameters gives us a freedom to operate with the processes and we get a wider application possibilities. On the other hand, it leads to the need to apply rather subtle methods, depending on the intervals where the parameters fall. Integration with respect to the processes under consideration is defined, and it is found for which parameters the processes are differentiable. Finally, the Volterra representation is inverted, that is, the representation of the underlying Wiener process via Gaussian Volterra process is found. Therefore, it is shown that for any indices for which Gaussian Volterra process is defined, it generates the same flow of sigma-fields as the underlying Wiener process – the property that has been used many times when considering a fractional Brownian motion.
is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.
We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.
Stationary processes have been extensively studied in the literature. Their applications include modeling and forecasting numerous real life phenomena such as natural disasters, sales and market movements. When stationary processes are considered, modeling is traditionally based on fitting an autoregressive moving average (ARMA) process. However, we challenge this conventional approach. Instead of fitting an ARMA model, we apply an AR(1) characterization in modeling any strictly stationary processes. Moreover, we derive consistent and asymptotically normal estimators of the corresponding model parameter.
European call option issued on a bond governed by a modified geometric Ornstein-Uhlenbeck process, is investigated. Objective price of such option as a function of the mean and the variance of a geometric Ornstein-Uhlenbeck process is studied. It is proved that the “Ornstein-Uhlenbeck” market is arbitrage-free and complete. We obtain risk-neutral measure and calculate the fair price of a call option. We consider also the bond price, governed by a modified fractional geometric Ornstein-Uhlenbeck process with Hurst index $H\in (1/2,1)$. Limit behaviour of the variance of the process as $H\to 1/2$ and $H\to 1$ is studied, the monotonicity of the variance and the objective price of the option as a function of Hurst index is established.
Our paper starts from presentation and comparison of three definitions for the self-similar field. The interconnection between these definitions has been established. Then we consider the Lamperti scaling transformation for the self-similar field and investigate the connection between the scaling transformation for such field and the shift transformation for the corresponding stationary field. It was also shown that the fractional Brownian sheet has the ergodic scaling transformation. The strong limit theorems for the anisotropic growth of the sample paths of the self-similar field at 0 and at ∞ for the upper and lower functions have been proved. It was obtained the upper bound for growth of the field with ergodic scaling transformation for slowly varying functions. We present some examples of iterated log-type limits for the Gaussian self-similar random fields.