We investigate the convergence of hitting times for jump-diffusion processes. Specifically, we study a sequence of stochastic differential equations with jumps. Under reasonable assumptions, we establish the convergence of solutions to the equations and of the moments when the solutions hit certain sets.
European call option issued on a bond governed by a modified geometric Ornstein-Uhlenbeck process, is investigated. Objective price of such option as a function of the mean and the variance of a geometric Ornstein-Uhlenbeck process is studied. It is proved that the “Ornstein-Uhlenbeck” market is arbitrage-free and complete. We obtain risk-neutral measure and calculate the fair price of a call option. We consider also the bond price, governed by a modified fractional geometric Ornstein-Uhlenbeck process with Hurst index $H\in (1/2,1)$. Limit behaviour of the variance of the process as $H\to 1/2$ and $H\to 1$ is studied, the monotonicity of the variance and the objective price of the option as a function of Hurst index is established.
In the paper we establish strong uniqueness of solution of a system of stochastic differential equations with random non-Lipschitz coefficients that involve both the square integrable continuous vector martingales and centered and non-centered Poisson measures.
The notion of the transportation distance on the set of the Lévy measures on $\mathbb{R}$ is introduced. A Lévy-type process with a given symbol (state dependent analogue of the characteristic triplet) is proved to be well defined as a strong solution to a stochastic differential equation (SDE) under the assumption of Lipschitz continuity of the Lévy kernel in the symbol w.r.t. the state space variable in the transportation distance. As examples, we construct Gamma-type process and α-stable like process as strong solutions to SDEs.