We introduce a stochastic partial differential equation (SPDE) with elliptic operator in divergence form, with measurable and bounded coefficients and driven by space-time white noise. Such SPDEs could be used in mathematical modelling of diffusion phenomena in medium consisting of different kinds of materials and undergoing stochastic perturbations. We characterize the solution and, using the Stein–Malliavin calculus, we prove that the sequence of its recentered and renormalized spatial quadratic variations satisfies an almost sure central limit theorem. Particular focus is given to the interesting case where the coefficients of the operator are piecewise constant.
We introduce a new Gaussian process, a generalization of both fractional and subfractional Brownian motions, which could serve as a good model for a larger class of natural phenomena. We study its main stochastic properties and some increments characteristics. As an application, we deduce the properties of nonsemimartingality, Hölder continuity, nondifferentiablity, and existence of a local time.
with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.