We deal with a generalization of the risk model with stochastic premiums where dividends are paid according to a constant dividend strategy and consider heuristic approximations for the ruin probability. To be more precise, we construct five- and three-moment analogues to the De Vylder approximation. To this end, we obtain an explicit formula for the ruin probability in the case of exponentially distributed premium and claim sizes. Finally, we analyze the accuracy of the approximations for some typical distributions of premium and claim sizes using statistical estimates obtained by the Monte Carlo methods.
The paper deals with a generalization of the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. First of all, we derive piecewise integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. In addition, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes and find explicit formulas for the ruin probability as well as for the expected discounted dividend payments. Lastly, numerical illustrations for some multi-layer dividend strategies are presented.
The paper deals with a generalization of the risk model with stochastic premiums where dependence structures between claim sizes and inter-claim times as well as premium sizes and inter-premium times are modeled by Farlie–Gumbel–Morgenstern copulas. In addition, dividends are paid to its shareholders according to a threshold dividend strategy. We derive integral and integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. Next, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes. In particular, we find explicit formulas for the ruin probability in the model without either dividend payments or dependence as well as for the expected discounted dividend payments in the model without dependence. Finally, numerical illustrations are presented.
The paper deals with bonus–malus systems with different claim types and varying deductibles. The premium relativities are softened for the policyholders who are in the malus zone and these policyholders are subject to per claim deductibles depending on their levels in the bonus–malus scale and the types of the reported claims. We introduce such bonus–malus systems and study their basic properties. In particular, we investigate when it is possible to introduce varying deductibles, what restrictions we have and how we can do this. Moreover, we deal with the special case where varying deductibles are applied to the claims reported by policyholders occupying the highest level in the bonus–malus scale and consider two allocation principles for the deductibles. Finally, numerical illustrations are presented.
We deal with a generalization of the classical risk model when an insurance company gets additional funds whenever a claim arrives and consider some practical approaches to the estimation of the ruin probability. In particular, we get an upper exponential bound and construct an analogue to the De Vylder approximation for the ruin probability. We compare results of these approaches with statistical estimates obtained by the Monte Carlo method for selected distributions of claim sizes and additional funds.