In this paper, we deal with an Ornstein–Uhlenbeck process driven by sub-fractional Brownian motion of the second kind with Hurst index $H\in (\frac{1}{2},1)$. We provide a least squares estimator (LSE) of the drift parameter based on continuous-time observations. The strong consistency and the upper bound $O(1/\sqrt{n})$ in Kolmogorov distance for central limit theorem of the LSE are obtained. We use a Malliavin–Stein approach for normal approximations.
A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ is a weighted fractional Brownian motion with parameters $a>-1$, $|b|<1$, $|b|<a+1$. Least square-type estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are provided, respectively, for $(\theta ,\mu )$ and $(\theta ,\alpha )$ based on a continuous-time observation of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $. The strong consistency and the joint asymptotic distribution of $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are studied. Moreover, it is obtained that the limit distribution of ${\widetilde{\theta }_{T}}$ is a Cauchy-type distribution, and ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ are asymptotically normal.
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. This kind of processes are useful in the study of chain molecular diffusions. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of the random variables of the process. Moreover we study independent random time-changes with the inverse of the stable subordinator, the stable subordinator and the tempered stable subordinator. We also present some asymptotic results in the fashion of large deviations. These results give some generalizations of those presented in [Journal of Statistical Physics 154 (2014), 1352–1364].
Explicit solutions for a class of linear backward stochastic differential equations (BSDE) driven by Gaussian Volterra processes are given. These processes include the multifractional Brownian motion and the multifractional Ornstein-Uhlenbeck process. By an Itô formula, proven in the context of Malliavin calculus, the BSDE is associated to a linear second order partial differential equation with terminal condition whose solution is given by a Feynman-Kac type formula.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
We find the best approximation of the fractional Brownian motion with the Hurst index $H\in (0,1/2)$ by Gaussian martingales of the form ${\textstyle\int _{0}^{t}}{s^{\gamma }}d{W_{s}}$, where W is a Wiener process, $\gamma >0$.
In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.
We investigate the fractional Vasicek model described by the stochastic differential equation $d{X_{t}}=(\alpha -\beta {X_{t}})\hspace{0.1667em}dt+\gamma \hspace{0.1667em}d{B_{t}^{H}}$, ${X_{0}}={x_{0}}$, driven by the fractional Brownian motion ${B^{H}}$ with the known Hurst parameter $H\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters α and β in the non-ergodic case (when $\beta <0$) for arbitrary ${x_{0}}\in \mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular ${x_{0}}=\alpha /\beta $, derive their asymptotic distributions and prove their asymptotic independence.
In this paper the fractional Cox–Ingersoll–Ross process on ${\mathbb{R}_{+}}$ for $H<1/2$ is defined as a square of a pointwise limit of the processes ${Y_{\varepsilon }}$, satisfying the SDE of the form $d{Y_{\varepsilon }}(t)=(\frac{k}{{Y_{\varepsilon }}(t){1_{\{{Y_{\varepsilon }}(t)>0\}}}+\varepsilon }-a{Y_{\varepsilon }}(t))dt+\sigma d{B^{H}}(t)$, as $\varepsilon \downarrow 0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox–Ingersoll–Ross process are obtained.
For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.