Existence and uniqueness of weak solution to a three-dimensional stochastic modified-Leray-alpha model of fluid turbulence
Volume 8, Issue 1 (2021), pp. 115–137
Pub. online: 16 March 2021
Type: Research Article
Open Access
Received
9 August 2020
9 August 2020
Revised
27 February 2021
27 February 2021
Accepted
27 February 2021
27 February 2021
Published
16 March 2021
16 March 2021
Abstract
In this paper, we study the stochastic three-dimensional modified Leray-alpha model arising from the turbulent flows of fluids. We prove the existence of the probabilistic weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also discuss its uniqueness.
References
Bensoussan, A.: Some existence results for stochastic partial differential equation. Stochastic Partial Differential Equations and Applications (Trento, 1990), Pitman Res. Notes Math. Ser., vol. 268. Longman Sci. Tech., Harlow, UK, 37–53 (1992). MR1222687
Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38, 267–304 (1995). MR1326637. https://doi.org/10.1007/BF00996149
Bensoussan, A., Temam, R.: Équations stochastiques du type Navier-Stokes. J. Funct. Anal. 13, 195–222 (1973). MR0348841. https://doi.org/10.1016/0022-1236(73)90045-1
Billingsley, P.: Probability and Measure, 3rd edn. Wiley (1995). MR1324786
Caraballo, T., Real, J., Taniguchi, T.: The existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations. Proc. R. Soc. A 462, 459–479 (2006). MR2269674. https://doi.org/10.1098/rspa.2005.1574
Chaabani, A., Nasfi, R., Selmi, R., Zaabi, M.: Well-posedness and convergence results for strong solution to a 3D-regularized Boussinesq system. Math. Methods Appl. Sci. (2016). https://doi.org/10.1002/mma.3950
Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999). MR1719962. https://doi.org/10.1063/1.870096
Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-α model of turbulence. Proc. R. Soc. A 461, 629–649 (2005). MR2121928. https://doi.org/10.1098/rspa.2004.1373
Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988). MR0972259
Deugoué, G., Sango, M.: On the stochastic 3D Navier-Stokes-α model of fluids turbulence. Abstr. Appl. Anal., Article ID 723236 (2009). 27 pp. MR2563999. https://doi.org/10.1155/2009/723236
Fang, S., Qiu, H.: Stochastic simplified Bardina turbulent model: existence of weak solution. Acta Math. Sci. 34, 1041–1054 (2014). MR3209660. https://doi.org/10.1016/S0252-9602(14)60068-0
Ilyin, A.A., Lunasin, E.M., Titi, E.S.: A modified-Leray-α subgrid scale model of turbulence. Nonlinearity 19, 879–897 (2006). MR2214948. https://doi.org/10.1088/0951-7715/23/9/006
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1988). MR0917065. https://doi.org/10.1007/978-1-4684-0302-2
Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981). MR570795. https://doi.org/10.1007/BF01084893
Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier-Stokes equations. Appl. Math. Optim. 48, 195–210 (2003). MR2004282. https://doi.org/10.1007/s00245-003-0773-7
Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2012). MR2962229. https://doi.org/10.1017/CBO9781139105798
Mohan, M.T.: Global strong solutions of the stochastic three dimensional inviscid simplified bardina turbulence model. Commun. Stoch. Anal. 12 (2019). Article 3. MR3939455. https://doi.org/10.31390/cosa.12.3.03
Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Difierential Equations. Lecture notes in Mathematics, vol. 1905. Springer, Berlin (2007). MR2329435
Prohorov, Y.V.: Convergence of random processes and limit theorems in probability theory (in russian). Teor. Veroâtn. Primen. 1, 177–238 (1956). MR0084896. https://doi.org/10.1137/1101016
Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987). MR0924157
Selmi, R.: Global well-posedness and convergence results for the 3D-regularized Boussinesq system. Can. J. Math. 64, 1415–1435 (2012). MR2994672. https://doi.org/10.4153/CJM-2012-013-5
Selmi, R., Nasfi, R.: Mixing and limit theorems for a damped nonlinear wave equation with space-time localised noise. Analysis, Probability, Applications, and Computation, Trends in Mathematics. Birkhäuser, Cham, 221–229 (2019). https://doi.org/10.1007/978-3-030-04459-6_21
Selmi, R., Zaabi, M.: Analytical study to a 3D-regularized Boussinesq system. Mem. Differ. Equ. Math. Phys. 79, 93–105 (2020). https://www.emis.de/journals/MDEMP/vol79/vol79-6.pdf. MR4088039
Skorokhod, A.V.: Limit theorems for stochastic processes. Teor. Veroâtn. Primen. 1, 289–319 (1956). MR0084897. https://doi.org/10.1137/1101022
Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland publishing company, Amsterdam (1977). MR0609732