We deal with a generalization of the risk model with stochastic premiums where dividends are paid according to a constant dividend strategy and consider heuristic approximations for the ruin probability. To be more precise, we construct five- and three-moment analogues to the De Vylder approximation. To this end, we obtain an explicit formula for the ruin probability in the case of exponentially distributed premium and claim sizes. Finally, we analyze the accuracy of the approximations for some typical distributions of premium and claim sizes using statistical estimates obtained by the Monte Carlo methods.
Based on a discrete version of the Pollaczeck–Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
The paper deals with a generalization of the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. First of all, we derive piecewise integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. In addition, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes and find explicit formulas for the ruin probability as well as for the expected discounted dividend payments. Lastly, numerical illustrations for some multi-layer dividend strategies are presented.
The discrete time risk model with two seasons and dependent claims is considered. An algorithm is created for computing the values of the ultimate ruin probability. Theoretical results are illustrated with numerical examples.
We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal risk model. We consider the model with independent, but not necessarily identically distributed, claim sizes and the interoccurrence times. In order to prove the main theorem, we first formulate and prove an auxiliary lemma on large values of a sum of random variables asymptotically drifted in the negative direction.