Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 1 (2021)
  4. Long-time behavior of a nonautonomous st ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Long-time behavior of a nonautonomous stochastic predator–prey model with jumps
Volume 8, Issue 1 (2021), pp. 17–39
Olga Borysenko   Oleksandr Borysenko ORCID icon link to view author Oleksandr Borysenko details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA173
Pub. online: 8 March 2021      Type: Research Article      Open accessOpen Access

Received
20 November 2020
Revised
12 February 2021
Accepted
21 February 2021
Published
8 March 2021

Abstract

The existence and uniqueness of a global positive solution is proven for the system of stochastic differential equations describing a nonautonomous stochastic predator–prey model with a modified version of the Leslie–Gower term and Holling-type II functional response disturbed by white noise, centered and noncentered Poisson noises. Sufficient conditions are obtained for stochastic ultimate boundedness, stochastic permanence, nonpersistence in the mean, weak persistence in the mean and extinction of a solution to the considered system.

1 Introduction

The deterministic predator–prey model with modified version of Leslie–Gower term and Holling-type II functional response is studied in [1]. This model has the form
(1)
\[\begin{array}{r}\displaystyle d{x_{1}}(t)={x_{1}}(t)\left(a-b{x_{1}}(t)-\frac{c{x_{2}}(t)}{{m_{1}}+{x_{1}}(t)}\right)dt,\\ {} \displaystyle d{x_{2}}(t)={x_{2}}(t)\left(r-\frac{f{x_{2}}(t)}{{m_{2}}+{x_{1}}(t)}\right)dt,\end{array}\]
where ${x_{1}}(t)$ and ${x_{2}}(t)$ are the prey and predator population densities at time t, respectively. The positive constants a, b, c, r, f, ${m_{1}}$, ${m_{2}}$ are defined as follows: a is the growth rate of prey ${x_{1}}$; b measures the strength of competition among individuals of species ${x_{1}}$; c is the maximum value of the per capita reduction rate of ${x_{1}}$ due to ${x_{2}}$; ${m_{1}}$ and ${m_{2}}$ measure the extent to which the environment provides protection to the prey ${x_{1}}$ and to the predator ${x_{2}}$, respectively; r is the growth rate of the predator ${x_{2}}$, and f has a similar meaning to c. In [1] the authors study boundedness and global stability of the positive equilibrium of the model (1).
In the papers [6, 7, 9] the stochastic version of model (1) is considered in the form
(2)
\[\begin{array}{r}\displaystyle d{x_{1}}(t)={x_{1}}(t)\left(a-b{x_{1}}(t)-\frac{c{x_{2}}(t)}{{m_{1}}+{x_{1}}(t)}\right)dt+\alpha {x_{1}}(t)d{w_{1}}(t),\\ {} \displaystyle d{x_{2}}(t)={x_{2}}(t)\left(r-\frac{f{x_{2}}(t)}{{m_{2}}+{x_{1}}(t)}\right)dt+\beta {x_{2}}(t)d{w_{2}}(t),\end{array}\]
where ${w_{1}}(t)$ and ${w_{2}}(t)$ are mutually independent Wiener processes in [6, 7], and processes ${w_{1}}(t)$, ${w_{2}}(t)$ are correlated in [9]. In [6] the authors proved that there is a unique positive solution to the system (2), obtaining the sufficient conditions for extinction and persistence in the mean of predator and prey. In [7] it is shown that, under appropriate conditions, there is a stationary distribution of the solution to the system (2) which is ergodic. In [9] the authors prove that the densities of the distributions of the solution to the system (2) can converge in ${L^{1}}$ to an invariant density or can converge weakly to a singular measure under appropriate conditions.
Population systems may suffer abrupt environmental perturbations, such as epidemics, fires, earthquakes, etc. So it is natural to introduce Poisson noises into the population model for describing such discontinuous systems.
In this paper, we consider the nonautonomous predator–prey model with modified version of the Leslie–Gower term and Holling-type II functional response, disturbed by white noise and jumps generated by centered and noncentered Poisson measures. So, we take into account not only “small” jumps, corresponding to the centered Poisson measure, but also the “large” jumps, corresponding to the noncentered Poisson measure. This model is driven by the system of stochastic differential equations
(3)
\[\begin{array}{r}\displaystyle d{x_{i}}(t)={x_{i}}(t)\left[{a_{i}}(t)-{b_{i}}(t){x_{i}}(t)-\frac{{c_{i}}(t){x_{2}}(t)}{m(t)+{x_{1}}(t)}\right]dt+{\sigma _{i}}(t){x_{i}}(t)d{w_{i}}(t)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }{\gamma _{i}}(t,z){x_{i}}(t){\tilde{\nu }_{1}}(dt,dz)+\underset{\mathbb{R}}{\int }{\delta _{i}}(t,z){x_{i}}(t){\nu _{2}}(dt,dz),\\ {} \displaystyle {x_{i}}(0)={x_{i0}}>0,\hspace{2.5pt}i=1,2,\end{array}\]
where ${x_{1}}(t)$ and ${x_{2}}(t)$ are the prey and predator population densities at time t, respectively, ${b_{2}}(t)\equiv 0$, ${w_{i}}(t),i=1,2$, are independent standard one-dimensional Wiener processes, ${\nu _{i}}(t,A),i=1,2$, are independent Poisson measures, which are independent on ${w_{i}}(t),i=1,2$, ${\tilde{\nu }_{1}}(t,A)={\nu _{1}}(t,A)-t{\Pi _{1}}(A)$, $E[{\nu _{i}}(t,A)]=t{\Pi _{i}}(A)$, $i=1,2$, ${\Pi _{i}}(A),i=1,2$, are finite measures on the Borel sets A in $\mathbb{R}$.
To the best of our knowledge, there have been no papers devoted to the dynamical properties of the stochastic predator–prey model (3), even in the case of centered Poisson noise. It is worth noting that the impact of centered and noncentered Poisson noises to the stochastic nonautonomous logistic model and to the stochastic two-species mutualism model is studied in the papers [2–4].
In the following we will use the notations $X(t)=({x_{1}}(t),{x_{2}}(t))$, ${X_{0}}=({x_{10}},{x_{20}})$, $|X(t)|=\sqrt{{x_{1}^{2}}(t)+{x_{2}^{2}}(t)}$, ${\mathbb{R}_{+}^{2}}=\{X\in {\mathbb{R}^{2}}:\hspace{2.5pt}{x_{1}}>0,{x_{2}}>0\}$,
\[\begin{array}{r}\displaystyle {\alpha _{i}}(t)={a_{i}}(t)+{\int _{\mathbb{R}}}{\delta _{i}}(t,z){\Pi _{2}}(dz),\\ {} \displaystyle {\beta _{i}}(t)\hspace{-0.1667em}=\hspace{-0.1667em}\frac{{\sigma _{i}^{2}}(t)}{2}\hspace{-0.1667em}+\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }[{\gamma _{i}}(t,z)\hspace{-0.1667em}-\hspace{-0.1667em}\ln (1\hspace{-0.1667em}+\hspace{-0.1667em}{\gamma _{i}}(t,z))]{\Pi _{1}}(dz)\hspace{-0.1667em}-\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\ln (1\hspace{-0.1667em}+\hspace{-0.1667em}{\delta _{i}}(t,z)){\Pi _{2}}(dz),\end{array}\]
$i=1,2$. For bounded, continuous functions ${f_{i}}(t),t\in [0,+\infty )$, $i=1,2$, let us denote
\[\begin{array}{r}\displaystyle {f_{i\sup }}=\underset{t\ge 0}{\sup }{f_{i}}(t),{f_{i\inf }}=\underset{t\ge 0}{\inf }{f_{i}}(t),i=1,2,\\ {} \displaystyle {f_{\max }}=\max \{{f_{1\sup }},{f_{2\sup }}\},{f_{\min }}=\min \{{f_{1\inf }},{f_{2\inf }}\}.\end{array}\]
We prove that the system (3) has a unique, positive, global (no explosion in a finite time) solution for any positive initial value, and that this solution is stochastically ultimately bounded. The sufficient conditions for stochastic permanence, nonpersistence in the mean, weak persistence in the mean and extinction of solution are derived.
The rest of this paper is organized as follows. In Section 2, we prove the existence of the unique global positive solution to the system (3) and derive some auxiliary results. In Section 3, we prove the stochastic ultimate boundedness of the solution to the system (3), obtainig conditions under which the solution is stochastically permanent. The sufficient conditions for nonpersistence in the mean, weak persistence in the mean and extinction of the solution are derived.

2 Existence of global solution and some auxiliary lemmas

Let $(\Omega ,\mathcal{F},\mathrm{P})$ be a probability space, ${w_{i}}(t),i=1$, $2,t\ge 0$, are independent standard one-dimensional Wiener processes on $(\Omega ,\mathcal{F},\mathrm{P})$, and ${\nu _{i}}(t,A),i=1,2$, are independent Poisson measures defined on $(\Omega ,\mathcal{F},\mathrm{P})$ independent on ${w_{i}}(t),i=1,2$. Here $\mathrm{E}[{\nu _{i}}(t,A)]=t{\Pi _{i}}(A)$, $i=1,2$, ${\tilde{\nu }_{i}}(t,A)={\nu _{i}}(t,A)-t{\Pi _{i}}(A)$, $i=1,2$, ${\Pi _{i}}(\cdot ),i=1,2$, are finite measures on the Borel sets in $\mathbb{R}$. On the probability space $(\Omega ,\mathcal{F},\mathrm{P})$ we consider an increasing, right continuous family of complete sub-σ-algebras ${\{{\mathcal{F}_{t}}\}_{t\ge 0}}$, where ${\mathcal{F}_{t}}=\sigma \{{w_{i}}(s),{\nu _{i}}(s,A),s\le t,i=1,2\}$.
We need the following assumption.
Assumption 1.
It is assumed that ${a_{i}}(t)$, ${b_{1}}(t)$, ${c_{i}}(t),{\sigma _{i}}(t),{\gamma _{i}}(t,z),{\delta _{i}}(t,z),i=1,2$, $m(t)$ are bounded, continuous on t functions, ${a_{i}}(t)>0$, $i=1,2$, ${b_{1\inf }}>0$, ${c_{i\inf }}>0$, $i=1,2$, ${m_{\inf }}={\inf _{t\ge 0}}m(t)>0$, and $\ln (1+{\gamma _{i}}(t,z)),\ln (1+{\delta _{i}}(t,z)),i=1,2$, are bounded, ${\Pi _{i}}(\mathbb{R})<\infty $, $i=1,2$.
In what follows we will assume that Assumption 1 holds.
Theorem 1.
There exists a unique global solution $X(t)$ to the system (3) for any initial value $X(0)={X_{0}}\in {\mathbb{R}_{+}^{2}}$, and $\mathrm{P}\{X(t)\in {\mathbb{R}_{+}^{2}}\}=1$.
Proof.
Let us consider the system of stochastic differential equations
(4)
\[\begin{array}{r}\displaystyle d{\xi _{i}}(t)=\left[{a_{i}}(t)-{b_{i}}(t)\exp \{{\xi _{i}}(t)\}-\frac{{c_{i}}(t)\exp \{{\xi _{2}}(t)\}}{m(t)+\exp \{{\xi _{1}}(t)\}}-{\beta _{i}}(t)\right]dt\\ {} \displaystyle +{\sigma _{i}}(t)d{w_{i}}(t)+\underset{\mathbb{R}}{\int }\ln (1+{\gamma _{i}}(t,z)){\tilde{\nu }_{1}}(dt,dz)+\underset{\mathbb{R}}{\int }\ln (1+{\delta _{i}}(t,z)){\tilde{\nu }_{2}}(dt,dz),\\ {} \displaystyle {v_{i}}(0)=\ln {x_{i0}},\hspace{2.5pt}i=1,2.\end{array}\]
The coefficients of the system (4) are locally Lipschitz continuous. So, for any initial value $({\xi _{1}}(0),{\xi _{2}}(0))$ there exists a unique local solution $\Xi (t)=({\xi _{1}}(t),{\xi _{2}}(t))$ on $[0,{\tau _{e}})$, where ${\sup _{t<{\tau _{e}}}}|\Xi (t)|=+\infty $ (cf. Theorem 6, p. 246, [5]). Therefore, from the Itô formula we derive that the process $X(t)=(\exp \{{\xi _{1}}(t)\},\exp \{{\xi _{2}}(t)\})$ is a unique, positive local solution to the system (3). To show this solution is global, we need to show that ${\tau _{e}}=+\infty $ a.s. Let ${n_{0}}\in \mathbb{N}$ be sufficiently large for ${x_{i0}}\in [1/{n_{0}},{n_{0}}]$, $i=1,2$. For any $n\ge {n_{0}}$ we define the stopping time
\[ {\tau _{n}}=\inf \left\{t\in [0,{\tau _{e}}):\hspace{2.5pt}X(t)\notin \left(\frac{1}{n},n\right)\times \left(\frac{1}{n},n\right)\right\}.\]
It is easy to see that ${\tau _{n}}$ is increasing as $n\to +\infty $. Denote ${\tau _{\infty }}={\lim \nolimits_{n\to \infty }}{\tau _{n}}$, whence ${\tau _{\infty }}\le {\tau _{e}}$ a.s. If we prove that ${\tau _{\infty }}=\infty $ a.s., then ${\tau _{e}}=\infty $ a.s. and $X(t)\in {\mathbb{R}_{+}^{2}}$ a.s. for all $t\in [0,+\infty )$. So we need to show that ${\tau _{\infty }}=\infty $ a.s. If it is not true, there are constants $T>0$ and $\varepsilon \in (0,1)$, such that $\mathrm{P}\{{\tau _{\infty }}<T\}>\varepsilon $. Hence, there is ${n_{1}}\ge {n_{0}}$ such that
(5)
\[ \mathrm{P}\{{\tau _{n}}<T\}>\varepsilon ,\hspace{1em}\forall n\ge {n_{1}}.\]
For the nonnegative function $V(X)={\textstyle\sum \limits_{i=1}^{2}}{k_{i}}({x_{i}}-1-\ln {x_{i}})$, $X=({x_{1}},{x_{2}})$, ${x_{i}}>0$, ${k_{i}}>0$, $i=1,2$, by the Itô formula we obtain
(6)
\[\begin{array}{r}\displaystyle dV(X(t))={\sum \limits_{i=1}^{2}}{k_{i}}\Bigg\{({x_{i}}(t)-1)\left[{a_{i}}(t)-{b_{i}}(t){x_{i}}(t)-\frac{{c_{i}}(t){x_{2}}(t)}{m(t)+{x_{1}}(t)}\right]\\ {} \displaystyle +{\beta _{i}}(t)+\underset{\mathbb{R}}{\int }{\delta _{i}}(t,z){x_{i}}(t){\Pi _{2}}(dz)\Bigg\}dt+{\sum \limits_{i=1}^{2}}{k_{i}}\Bigg\{({x_{i}}(t)-1){\sigma _{i}}(t)d{w_{i}}(t)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\hspace{-0.1667em}[{\gamma _{i}}(t,z){x_{i}}(t)-\ln (1+{\gamma _{i}}(t,z))]{\tilde{\nu }_{1}}(dt,dz)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }[{\delta _{i}}(t,z){x_{i}}(t)-\ln (1+{\delta _{i}}(t,z))]{\tilde{\nu }_{2}}(dt,dz)\Bigg\}.\end{array}\]
Let us consider the function $f(t,{x_{1}},{x_{2}})=\phi (t,{x_{1}})+\psi (t,{x_{1}},{x_{2}})$, ${x_{1}}>0$, ${x_{2}}>0$, where
\[\begin{array}{r}\displaystyle \phi (t,{x_{1}})=-{k_{1}}{b_{1}}(t){x_{1}^{2}}+{k_{1}}\Big({\alpha _{1}}(t)+{b_{1}}(t)\Big){x_{1}}+{k_{1}}{\beta _{1}}(t)+{k_{2}}{\beta _{2}}(t)\\ {} \displaystyle -{k_{1}}{a_{1}}(t)-{k_{2}}{a_{2}}(t),\\ {} \displaystyle \psi (t,{x_{1}},{x_{2}})={(m(t)+{x_{1}})^{-1}}\Big[-{k_{2}}{c_{2}}(t){x_{2}^{2}}+\Big({k_{2}}{\alpha _{2}}(t)-{k_{1}}{c_{1}}(t)\Big){x_{1}}{x_{2}}\\ {} \displaystyle +\Big({k_{2}}{\alpha _{2}}(t)m(t)+{k_{1}}{c_{1}}(t)+{k_{2}}{c_{2}}(t)\Big){x_{2}}\Big].\end{array}\]
Under Assumption 1 there is a constant ${L_{1}}({k_{1}},{k_{2}})>0$, such that
\[ \phi (t,{x_{1}})\le {k_{1}}\left[-{b_{1\inf }}{x_{1}^{2}}+\left({\alpha _{1\sup }}+{b_{1\sup }}\right){x_{1}}\right]+{\beta _{\max }}({k_{1}}+{k_{2}})\le {L_{1}}({k_{1}},{k_{2}}).\]
If ${\alpha _{2\sup }}\le 0$, then for the function $\psi (t,{x_{1}},{x_{2}})$ we have
\[ \psi (t,{x_{1}},{x_{2}})\le \frac{-{k_{2}}{c_{2\inf }}{x_{2}^{2}}+({k_{1}}+{k_{2}}){c_{\max }}{x_{2}}}{m(t)+{x_{1}}}\le {L_{2}}({k_{1}},{k_{2}}).\]
If ${\alpha _{2\sup }}>0$, then for ${k_{2}}={k_{1}}\frac{{c_{1\inf }}}{{\alpha _{2\sup }}}$ there is a constant ${L_{3}}({k_{1}},{k_{2}})>0$, such that
\[\begin{array}{r}\displaystyle \psi (t,{x_{1}},{x_{2}})\le \Bigg\{-{k_{2}}{c_{2\inf }}{x_{2}^{2}}+({k_{2}}{\alpha _{2\sup }}-{k_{1}}{c_{1\inf }}){x_{1}}{x_{2}}+\Bigg[{k_{2}}{\alpha _{2\sup }}{m_{\sup }}\\ {} \displaystyle +({k_{1}}+{k_{2}}){c_{\max }}\Bigg]{x_{2}}\Bigg\}{(m(t)+{x_{1}})^{-1}}=\frac{{k_{1}}}{m(t)+{x_{1}}}\bigg\{-\frac{{c_{1\inf }}{c_{2\inf }}}{{\alpha _{2\sup }}}{x_{2}^{2}}\\ {} \displaystyle +\bigg[{c_{1\inf }}{m_{\sup }}+\left(1+\frac{{c_{1\inf }}}{{\alpha _{2\sup }}}\right){c_{\max }}\bigg]{x_{2}}\bigg\}\le {L_{3}}({k_{1}},{k_{2}}).\end{array}\]
Therefore, there is a constant $L({k_{1}},{k_{2}})>0$, such that $f(t,{x_{1}},{x_{2}})\le L({k_{1}},{k_{2}})$. So, from (6) we obtain by integrating
(7)
\[\begin{array}{r}\displaystyle V(X(T\wedge {\tau _{n}}))\le V({X_{0}})+L({k_{1}},{k_{2}})(T\wedge {\tau _{n}})\\ {} \displaystyle +{\sum \limits_{i=1}^{2}}{k_{i}}\Bigg\{{\underset{0}{\overset{T\wedge {\tau _{n}}}{\int }}}({x_{i}}(t)-1){\sigma _{i}}(t)d{w_{i}}(t)+{\underset{0}{\overset{T\wedge {\tau _{n}}}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\Big[{\gamma _{i}}(t,z){x_{i}}(t)-\ln (1\\ {} \displaystyle +{\gamma _{i}}(t,z))\Big]{\tilde{\nu }_{1}}(dt,dz)+{\underset{0}{\overset{T\wedge {\tau _{n}}}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }[{\delta _{i}}(t,z){x_{i}}(t)-\ln (1+{\delta _{i}}(t,z))]{\tilde{\nu }_{2}}(dt,dz)\Bigg\}.\end{array}\]
Taking expectations we derive from (7)
(8)
\[ \mathrm{E}\left[V(X(T\wedge {\tau _{n}}))\right]\le V({X_{0}})+L({k_{1}},{k_{2}})T.\]
Set ${\Omega _{n}}=\{{\tau _{n}}\le T\}$ for $n\ge {n_{1}}$. Then by (5), $\mathrm{P}({\Omega _{n}})=\mathrm{P}\{{\tau _{n}}\le T\}>\varepsilon $, $\forall n\ge {n_{1}}$. Note that for every $\omega \in {\Omega _{n}}$ at least one of ${x_{1}}({\tau _{n}},\omega )$ and ${x_{2}}({\tau _{n}},\omega )$ equals either n or $1/n$. So
\[ V(X({\tau _{n}}))\ge \min \{{k_{1}},{k_{2}}\}\min \{n-1-\ln n,\frac{1}{n}-1+\ln n\}.\]
From (8) it follows
\[\begin{array}{r}\displaystyle V({X_{0}})+L({k_{1}},{k_{2}})T\ge \mathrm{E}[{\mathbf{1}_{{\Omega _{n}}}}V(X({\tau _{n}}))]\\ {} \displaystyle \ge \varepsilon \min \{{k_{1}},{k_{2}}\}\min \{n-1-\ln n,\frac{1}{n}-1+\ln n\},\end{array}\]
where ${\mathbf{1}_{{\Omega _{n}}}}$ is the indicator function of ${\Omega _{n}}$. Letting $n\to \infty $ leads to the contradiction $\infty >V({X_{0}})+L({k_{1}},{k_{2}})T=\infty $. This completes the proof of the theorem.  □
Lemma 1.
The density of the prey population ${x_{1}}(t)$ obeys
(9)
\[ \underset{t\to \infty }{\limsup }\frac{\ln (m+{x_{1}}(t))}{t}\le 0,\hspace{2.5pt}\forall m>0,\hspace{2em}\textit{a.s.}\]
Proof.
By the Itô formula for the process ${e^{t}}\ln (m+{x_{1}}(t))$ we have
(10)
\[\begin{array}{r}\displaystyle {e^{t}}\ln (m+{x_{1}}(t))-\ln (m+{x_{10}})={\int _{0}^{t}}{e^{s}}\Bigg\{\ln (m+{x_{1}}(s))\\ {} \displaystyle +\hspace{-0.1667em}\frac{{x_{1}}(s)}{m+{x_{1}}(s)}\bigg[{a_{1}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}{b_{1}}(s){x_{1}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{c_{1}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}\bigg]\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{\sigma _{1}^{2}}(s){x_{1}^{2}}(s)}{2{(m+{x_{1}}(s))^{2}}}\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\bigg[\ln \bigg(1+\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg)-\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg]{\Pi _{1}}(dz)\Bigg\}ds\\ {} \displaystyle +{\int _{0}^{t}}{e^{s}}\frac{{\sigma _{1}}(s){x_{1}}(s)}{m+{x_{1}}(s)}d{w_{1}}(s)+{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{e^{s}}\ln \bigg(1+\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg){\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{e^{s}}\ln \bigg(1+\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg){\nu _{2}}(ds,dz).\end{array}\]
For $0<\kappa \le 1$, let us denote the process
\[\begin{array}{r}\displaystyle {\zeta _{\kappa }}(t)={\int _{0}^{t}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}{e^{s}}\frac{{\sigma _{1}}(s){x_{1}}(s)}{m+{x_{1}}(s)}d{w_{1}}(s)\hspace{-0.1667em}+\hspace{-0.1667em}{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{e^{s}}\ln \bigg(1+\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg){\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +\hspace{-0.1667em}{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{e^{s}}\ln \bigg(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg)\hspace{-0.1667em}{\nu _{2}}(ds,dz)\hspace{-0.1667em}-\hspace{-0.1667em}\frac{\kappa }{2}\hspace{-0.1667em}{\int _{0}^{t}}\hspace{-0.1667em}\hspace{-0.1667em}{e^{2s}}{\sigma _{1}^{2}}(s){\left(\frac{{x_{1}}(s)}{m+{x_{1}}(s)}\right)^{2}}\hspace{-0.1667em}\hspace{-0.1667em}ds\\ {} \displaystyle -\frac{1}{\kappa }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\left[{\left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{\kappa {e^{s}}}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}-\hspace{-0.1667em}1\hspace{-0.1667em}-\hspace{-0.1667em}\kappa {e^{s}}\ln \left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)\right]{\Pi _{1}}(dz)ds\\ {} \displaystyle -\frac{1}{\kappa }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\left[{\left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{\kappa {e^{s}}}}-1\right]{\Pi _{2}}(dz)ds.\end{array}\]
By virtue of the exponential inequality ([3], Lemma 2.2) for any $T>0$, $0<\kappa \le 1$, $\beta >0$, we have
(11)
\[ \mathrm{P}\{\underset{0\le t\le T}{\sup }{\zeta _{\kappa }}(t)>\beta \}\le {e^{-\kappa \beta }}.\]
Choosing $T=k\tau $, $k\in \mathbb{N}$, $\tau >0$, $\kappa =\varepsilon {e^{-k\tau }}$, $\beta =\theta {e^{k\tau }}{\varepsilon ^{-1}}\ln k$, $0<\varepsilon <1$, $\theta >1$, we get
\[ \mathrm{P}\{\underset{0\le t\le T}{\sup }{\zeta _{\kappa }}(t)>\theta {e^{k\tau }}{\varepsilon ^{-1}}\ln k\}\le \frac{1}{{k^{\theta }}}.\]
By the Borel–Cantelli lemma, for almost all $\omega \in \Omega $, there is a random integer ${k_{0}}(\omega )$, such that, for $\forall k\ge {k_{0}}(\omega )$ and $0\le t\le k\tau $, we have
(12)
\[\begin{array}{r}\displaystyle {\int _{0}^{t}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}{e^{s}}\frac{{\sigma _{1}}(s){x_{1}}(s)}{m+{x_{1}}(s)}d{w_{1}}(s)\hspace{-0.1667em}+\hspace{-0.1667em}{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{e^{s}}\ln \bigg(1+\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg){\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +\hspace{-0.1667em}{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{e^{s}}\ln \bigg(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\bigg)\hspace{-0.1667em}{\nu _{2}}(ds,dz)\le \\ {} \displaystyle \frac{\varepsilon }{2{e^{k\tau }}}\hspace{-0.1667em}\hspace{-0.1667em}{\int _{0}^{t}}\hspace{-0.1667em}\hspace{-0.1667em}{e^{2s}}{\left(\frac{{\sigma _{1}}(s){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{2}}\hspace{-0.1667em}\hspace{-0.1667em}ds+\frac{{e^{k\tau }}}{\varepsilon }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\bigg[{\left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{\varepsilon {e^{s-k\tau }}}}\\ {} \displaystyle -1-\varepsilon {e^{s-k\tau }}\ln \left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)\bigg]{\Pi _{1}}(dz)ds\\ {} \displaystyle +\frac{{e^{k\tau }}}{\varepsilon }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\left[{\left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{\varepsilon {e^{s-k\tau }}}}-1\right]{\Pi _{2}}(dz)ds+\frac{\theta {e^{k\tau }}\ln k}{\varepsilon }.\end{array}\]
By using the inequality ${x^{r}}\le 1+r(x-1)$, $\forall x\ge 0$, $0\le r\le 1$, with $x=1+\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}$, $r=\varepsilon {e^{s-k\tau }}$, and then with $x=1+\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}$, $r=\varepsilon {e^{s-k\tau }}$, we derive the estimates
(13)
\[\begin{array}{r}\displaystyle \frac{{e^{k\tau }}}{\varepsilon }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\bigg[{\left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{\varepsilon {e^{s-k\tau }}}}-1\\ {} \displaystyle -\varepsilon {e^{s-k\tau }}\ln \left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)\bigg]{\Pi _{1}}(dz)ds\\ {} \displaystyle \le {\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{e^{s}}\left[\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}-\ln \left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\gamma _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)\right]{\Pi _{1}}(dz)ds,\end{array}\]
(14)
\[\begin{array}{r}\displaystyle \frac{{e^{k\tau }}}{\varepsilon }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\left[{\left(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}\right)^{\varepsilon {e^{s-k\tau }}}}-1\right]{\Pi _{2}}(dz)ds\\ {} \displaystyle \le {\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{e^{s}}\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}{\Pi _{2}}(dz)ds.\end{array}\]
From (10), by using (12)–(14) we get
(15)
\[\begin{array}{r}\displaystyle {e^{t}}\ln (m+{x_{1}}(t))\le \ln (m+{x_{10}})+{\int _{0}^{t}}{e^{s}}\Bigg\{\ln (m+{x_{1}}(s))\\ {} \displaystyle +\frac{{x_{1}}(s)}{m+{x_{1}}(s)}\bigg[{a_{1}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}{b_{1}}(s){x_{1}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{c_{1}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}\bigg]\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{\sigma _{1}^{2}}(s){x_{1}^{2}}(s)}{2{(m+{x_{1}}(s))^{2}}}\\ {} \displaystyle \times \left(1-\varepsilon {e^{s-k\tau }}\right)+\underset{\mathbb{R}}{\int }\frac{{\delta _{1}}(s,z){x_{1}}(s)}{m+{x_{1}}(s)}{\Pi _{2}}(dz)\Bigg\}ds+\frac{\theta {e^{k\tau }}\ln k}{\varepsilon },\hspace{2.5pt}\text{a.s.}\end{array}\]
It is easy to see that, under Assumption 1, for any $x>0$ there exists a constant $L>0$ independent on k, s and x, such that
\[ \ln (m+x)-\frac{{x^{2}}{b_{1}}(s)}{m+x}+\frac{x{\alpha _{1}}(s)}{m+x}\le L.\]
So, from (15) for any $(k-1)\tau \le t\le k\tau $ we have (a.s.)
\[ \frac{\ln (m+{x_{1}}(t))}{\ln t}\le {e^{-t}}\frac{\ln (m+{x_{10}})}{\ln t}+\frac{L}{\ln t}(1-{e^{-t}})+\frac{\theta {e^{k\tau }}\ln k}{\varepsilon {e^{(k-1)\tau }}\ln (k-1)\tau }.\]
Therefore,
\[ \underset{t\to \infty }{\limsup }\frac{\ln (m+{x_{1}}(t))}{\ln t}\le \frac{\theta {e^{\tau }}}{\varepsilon },\hspace{2.5pt}\forall \theta >1,\tau >0,\varepsilon \in (0,1),\hspace{1em}\text{a.s.}\]
If $\theta \downarrow 1$, $\tau \downarrow 0$, $\varepsilon \uparrow 1$, we obtain
\[ \underset{t\to \infty }{\limsup }\frac{\ln (m+{x_{1}}(t))}{\ln t}\le 1,\hspace{1em}\text{a.s.}\]
So,
\[ \underset{t\to \infty }{\limsup }\frac{\ln (m+{x_{1}}(t))}{t}\le 0,\hspace{1em}\text{a.s.}\]
 □
Corollary 1.
The density of the prey population ${x_{1}}(t)$ obeys
\[ \underset{t\to \infty }{\limsup }\frac{\ln {x_{1}}(t)}{t}\le 0,\hspace{1em}\textit{a.s.}\]
Lemma 2.
The density of the predator population ${x_{2}}(t)$ has the property that
\[ \underset{t\to \infty }{\limsup }\frac{\ln {x_{2}}(t)}{t}\le 0,\hspace{1em}\textit{a.s.}\]
Proof.
Making use of the Itô formula we get
(16)
\[\begin{array}{r}\displaystyle {e^{t}}\ln {x_{2}}(t)-\ln {x_{20}}={\int _{0}^{t}}{e^{s}}\Bigg\{\ln {x_{2}}(s)+{a_{2}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{c_{2}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{\sigma _{2}^{2}}(s)}{2}\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\bigg[\ln \Big(1+{\gamma _{2}}(s,z)\Big)-{\gamma _{2}}(s,z)\bigg]{\Pi _{1}}(dz)\Bigg\}ds+\psi (t),\end{array}\]
where
\[\begin{array}{r}\displaystyle \psi (t)={\int _{0}^{t}}{e^{s}}{\sigma _{2}}(s)d{w_{2}}(s)+{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{e^{s}}\ln \Big(1+{\gamma _{2}}(s,z)\Big){\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{e^{s}}\ln \Big(1+{\delta _{2}}(s,z)\Big){\nu _{2}}(ds,dz).\end{array}\]
By virtue of the exponential inequality (11) we have
\[ \mathrm{P}\{\underset{0\le t\le T}{\sup }{\zeta _{\kappa }}(t)>\beta \}\le {e^{-\kappa \beta }},\forall 0<\kappa \le 1,\beta >0,\]
where
\[\begin{array}{r}\displaystyle {\zeta _{\kappa }}(t)=\psi (t)-\frac{\kappa }{2}{\underset{0}{\overset{t}{\int }}}{e^{2s}}{\sigma _{2}^{2}}(s)ds-\frac{1}{\kappa }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\Big[{(1+{\gamma _{2}}(s,z))^{\kappa {e^{s}}}}-1\\ {} \displaystyle -\kappa {e^{s}}\ln (1+{\gamma _{2}}(s,z))\Big]{\Pi _{1}}(dz)ds-\frac{1}{\kappa }{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\left[{(1+{\delta _{2}}(s,z))^{\kappa {e^{s}}}}-1\right]{\Pi _{2}}(dz)ds.\end{array}\]
Choosing $T=k\tau $, $k\in \mathbb{N}$, $\tau >0$, $\kappa ={e^{-k\tau }}$, $\beta =\theta {e^{k\tau }}\ln k$, $\theta >1$, we get
\[ \mathrm{P}\{\underset{0\le t\le T}{\sup }{\zeta _{\kappa }}(t)>\theta {e^{k\tau }}\ln k\}\le \frac{1}{{k^{\theta }}}.\]
By the same arguments as in the proof of Lemma 1, using the Borel–Cantelli lemma, we derive from (16)
(17)
\[\begin{array}{r}\displaystyle {e^{t}}\ln {x_{2}}(t)\le \ln {x_{20}}+{\int _{0}^{t}}{e^{s}}\bigg\{\ln {x_{2}}(s)+{a_{2}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{c_{2}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}\\ {} \displaystyle -\frac{{\sigma _{2}^{2}}(s)}{2}\left(1-{e^{s-k\tau }}\right)+\underset{\mathbb{R}}{\int }{\delta _{2}}(s,z){\Pi _{2}}(dz)\bigg\}ds+\theta {e^{k\tau }}\ln k,\hspace{1em}\text{a.s.,}\end{array}\]
for all sufficiently large $k\ge {k_{0}}(\omega )$ and $0\le t\le k\tau $.
Using inequality $\ln x-cx\le -\ln c-1$, $\forall x\ge 0$, $c>0$, with $x={x_{2}}(s)$, $c=\frac{{c_{2}}(s)}{m(s)+{x_{1}}(s)}$, we derive from (17) the estimate
\[ {e^{t}}\ln {x_{2}}(t)\le \ln {x_{20}}+{\underset{0}{\overset{t}{\int }}}{e^{s}}\ln \Big({m_{\sup }}+{x_{1}}(s)\Big)ds+L({e^{t}}-1)+\theta {e^{k\tau }}\ln k,\]
for some constant $L>0$.
So, for $(k-1)\tau \le t\le k\tau $, $k\ge {k_{0}}(\omega )$, we have
\[ \underset{t\to \infty }{\limsup }\frac{\ln {x_{2}}(t)}{t}\le \underset{t\to \infty }{\limsup }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{e^{s-t}}\ln \Big({m_{\sup }}+{x_{1}}(s)\Big)ds\le 0,\]
by virtue of Lemma 1.  □
Lemma 3.
Let $p>0$. Then for any initial value ${x_{10}}>0$, the pth-moment of the prey population density ${x_{1}}(t)$ obeys
(18)
\[ \underset{t\to \infty }{\limsup }\mathrm{E}\left[{x_{1}^{p}}(t)\right]\le {K_{1}}(p),\]
where ${K_{1}}(p)>0$ is independent of ${x_{10}}$.
For any initial value ${x_{20}}>0$, the expectation of the predator population density ${x_{2}}(t)$ obeys
(19)
\[ \underset{t\to \infty }{\limsup }\mathrm{E}\left[{x_{2}}(t)\right]\le {K_{2}},\]
where ${K_{2}}>0$ is independent of ${x_{20}}$.
Proof.
Let ${\tau _{n}}$ be the stopping time defined in Theorem 1. Applying the Itô formula to the process $V(t,{x_{1}}(t))={e^{t}}{x_{1}^{p}}(t)$, $p>0$, we obtain
(20)
\[\begin{array}{r}\displaystyle V(t\wedge {\tau _{n}},{x_{1}}(t\wedge {\tau _{n}}))={x_{10}^{p}}+{\underset{0}{\overset{t\wedge {\tau _{n}}}{\int }}}{e^{s}}{x_{1}^{p}}(s)\Bigg\{1+p\bigg[{a_{1}}(s)-{b_{1}}(s){x_{1}}(s)\\ {} \displaystyle -\frac{{c_{1}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}\bigg]+\frac{p(p-1){\sigma _{1}^{2}}(s)}{2}\hspace{-0.1667em}+\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\hspace{-0.1667em}\left[{(1+{\gamma _{1}}(s,z))^{p}}\hspace{-0.1667em}-\hspace{-0.1667em}1\hspace{-0.1667em}-\hspace{-0.1667em}p{\gamma _{1}}(s,z)\right]{\Pi _{1}}(dz)\hspace{-0.1667em}\\ {} \displaystyle +\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\hspace{-0.1667em}\left[{(1+{\delta _{1}}(s,z))^{p}}\hspace{-0.1667em}-\hspace{-0.1667em}1\right]{\Pi _{2}}(dz)\Bigg\}ds+{\underset{0}{\overset{t\wedge {\tau _{n}}}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}p{e^{s}}{x_{1}^{p}}(s){\sigma _{1}}(s)d{w_{1}}(s)\\ {} \displaystyle +{\underset{0}{\overset{t\wedge {\tau _{n}}}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{e^{s}}{x_{1}^{p}}(s)\left[{(1+{\gamma _{1}}(s,z))^{p}}-1\right]{\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +{\underset{0}{\overset{t\wedge {\tau _{n}}}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{e^{s}}{x_{1}^{p}}(s)\left[{(1+{\delta _{1}}(s,z))^{p}}-1\right]{\tilde{\nu }_{2}}(ds,dz).\end{array}\]
Under Assumption 1 there is a constant ${K_{1}}(p)>0$, such that
(21)
\[\begin{array}{r}\displaystyle {e^{s}}{x_{1}^{p}}\Bigg\{1+p\left[{a_{1}}(s)-{b_{1}}(s){x_{1}}-\frac{{c_{1}}(s){x_{2}}}{m(s)+{x_{1}}}\right]\hspace{-0.1667em}+\hspace{-0.1667em}\frac{p(p-1){\sigma _{1}^{2}}(s)}{2}+\\ {} \displaystyle +\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\hspace{-0.1667em}\left[{(1\hspace{-0.1667em}+\hspace{-0.1667em}{\gamma _{1}}(s,z))^{p}}\hspace{-0.1667em}-\hspace{-0.1667em}1\hspace{-0.1667em}-\hspace{-0.1667em}p{\gamma _{1}}(s,z)\right]{\Pi _{1}}(dz)\hspace{-0.1667em}+\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}\hspace{-0.1667em}\left[{(1+{\delta _{1}}(s,z))^{p}}\hspace{-0.1667em}-\hspace{-0.1667em}1\right]{\Pi _{2}}(dz)\Bigg\}\\ {} \displaystyle \le {K_{1}}(p){e^{s}}.\end{array}\]
From (20) and (21), taking expectations, we obtain
\[ \mathrm{E}[V(t\wedge {\tau _{n}},{x_{1}}(t\wedge {\tau _{n}}))]\le {x_{10}^{p}}+{K_{1}}(p){e^{t}}.\]
Letting $n\to \infty $ leads to the estimate
(22)
\[ {e^{t}}\mathrm{E}[{x_{1}^{p}}(t)]\le {x_{10}^{p}}+{e^{t}}{K_{1}}(p).\]
So from (22) we derive (18).
Let us prove the estimate (19). Applying the Itô formula to the process $U(t,X(t))={e^{t}}[{k_{1}}{x_{1}}(t)+{k_{2}}{x_{2}}(t)]$, ${k_{i}}>0$, $i=1,2$, we obtain
(23)
\[\begin{array}{r}\displaystyle dU(t,X(t))={e^{t}}\Bigg\{{k_{1}}{x_{1}}(t)+{k_{2}}{x_{2}}(t)+{k_{1}}\bigg[{a_{1}}(t){x_{1}}(t)-{b_{1}}(t){x_{1}^{2}}(t)\\ {} \displaystyle -\frac{{c_{1}}(t){x_{1}}(t){x_{2}}(t)}{m(t)+{x_{1}}(t)}\bigg]+{k_{2}}\bigg[{a_{2}}(t){x_{2}}(t)-\frac{{c_{2}}(t){x_{2}^{2}}(t)}{m(t)+{x_{1}}(t)}\bigg]\\ {} \displaystyle +\hspace{-0.1667em}{\sum \limits_{i=1}^{2}}{k_{i}}\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{x_{i}}(t){\delta _{i}}(t,z){\Pi _{2}}(dz)\Bigg\}dt+{e^{t}}\Bigg\{{\sum \limits_{i=1}^{2}}{k_{i}}\bigg[{x_{i}}(t){\sigma _{i}}(t)d{w_{i}}(t)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }{x_{i}}(t){\gamma _{i}}(t,z){\tilde{\nu }_{1}}(dt,dz)+\underset{\mathbb{R}}{\int }{x_{i}}(t){\delta _{i}}(t,z){\tilde{\nu }_{2}}(dt,dz)\bigg]\Bigg\}.\end{array}\]
For the function
\[\begin{array}{r}\displaystyle f(t,{x_{1}},{x_{2}})\hspace{-0.1667em}=\hspace{-0.1667em}\frac{1}{m(t)+{x_{1}}}\bigg\{{k_{1}}\Big[-{b_{1}}(t){x_{1}^{3}}\hspace{-0.1667em}+\Big(1\hspace{-0.1667em}+\hspace{-0.1667em}{a_{1}}(t)\hspace{-0.1667em}+\hspace{-0.1667em}{\bar{\delta }_{1}}(t)\hspace{-0.1667em}-\hspace{-0.1667em}{b_{1}}(t)m(t)\Big){x_{1}^{2}}\\ {} \displaystyle +m(t)\Big(1\hspace{-0.1667em}+\hspace{-0.1667em}{a_{1}}(t)\hspace{-0.1667em}+\hspace{-0.1667em}{\bar{\delta }_{1}}(t)\Big){x_{1}}\Big]+\Big[{k_{2}}\Big(1+{a_{2}}(t)+{\bar{\delta }_{2}}(t)\Big)-{k_{1}}{c_{1}}(t)\Big]{x_{1}}{x_{2}}\\ {} \displaystyle +{k_{2}}\Big[-{c_{2}}(t){x_{2}^{2}}+m(t)\Big(1+{a_{2}}(t)+{\bar{\delta }_{2}}(t)\Big){x_{2}}\Big]\bigg\},\\ {} \displaystyle \text{where}\hspace{2.5pt}{\bar{\delta }_{i}}(t)=\underset{\mathbb{R}}{\int }\hspace{-0.1667em}{\delta _{i}}(t,z){\Pi _{2}}(dz),\hspace{2.5pt}i=1,2,\end{array}\]
we have
\[ f(t,{x_{1}},{x_{2}})\le \frac{{\phi _{1}}({x_{1}},{x_{2}})+{\phi _{2}}({x_{2}})}{m(t)+{x_{1}}},\]
where
\[\begin{array}{r}\displaystyle {\phi _{1}}({x_{1}},{x_{2}})={k_{1}}\hspace{-0.1667em}\left[\hspace{-0.1667em}-{b_{1\inf }}{x_{1}^{3}}\hspace{-0.1667em}+\hspace{-0.1667em}\Big({d_{1}}-\hspace{-0.1667em}{b_{1\inf }}{m_{\inf }}\Big){x_{1}^{2}}+{m_{\sup }}{d_{1}}{x_{1}}\right]\\ {} \displaystyle +\Big[{k_{2}}{d_{2}}-{k_{1}}{c_{1\inf }}\Big]{x_{1}}{x_{2}},\\ {} \displaystyle {\phi _{2}}({x_{2}})={k_{2}}\left[-{c_{2\inf }}{x_{2}^{2}}+{m_{\sup }}{d_{2}}{x_{2}}\right],\hspace{2.5pt}{d_{i}}=1\hspace{-0.1667em}+\hspace{-0.1667em}{a_{i\sup }}+|{\bar{\delta }_{i}}{|_{\sup }},\hspace{2.5pt}i=1,2.\end{array}\]
For ${k_{2}}={k_{1}}{c_{1\inf }}/{d_{2}}$ there is a constant ${L^{\prime }}>0$, such that ${\phi _{1}}({x_{1}},{x_{2}})\le {L^{\prime }}{k_{1}}$ and ${\phi _{2}}({x_{2}})\le {L^{\prime }}{k_{1}}$. So, there is a constant $L>0$, such that
(24)
\[ f(t,{x_{1}},{x_{2}})\le L{k_{1}}.\]
From (23) and (24) by integrating and taking expectation, we derive
\[ \mathrm{E}[U(t\wedge {\tau _{n}},X(t\wedge {\tau _{n}}))]\le {k_{1}}\left[{x_{10}}+\frac{{c_{1\inf }}}{{d_{2}}}{x_{20}}+L{e^{t}}\right].\]
Letting $n\to \infty $ leads to the estimate
\[ {e^{t}}\mathrm{E}\left[{x_{1}}(t)+\frac{{c_{1\inf }}}{{d_{2}}}{x_{2}}(t)\right]\le {x_{10}}+\frac{{c_{1\inf }}}{{d_{2}}}{x_{20}}+L{e^{t}}.\]
So,
(25)
\[ \mathrm{E}[{x_{2}}(t)]\le \left(\frac{{d_{2}}}{{c_{1\inf }}}{x_{10}}+{x_{20}}\right){e^{-t}}+\frac{{d_{2}}}{{c_{1\inf }}}L.\]
From (25) we have (19).  □
Lemma 4.
If ${p_{2\inf }}>0$, where ${p_{2}}(t)={a_{2}}(t)-{\beta _{2}}(t)$, then for any initial value ${x_{20}}>0$, the predator population density ${x_{2}}(t)$ satisfies
(26)
\[ \underset{t\to \infty }{\limsup }\mathrm{E}\left[{\left(\frac{1}{{x_{2}}(t)}\right)^{\theta }}\right]\le K(\theta ),\hspace{2.5pt}0<\theta <1,\]
Proof.
For the process $U(t)=1/{x_{2}}(t)$ by the Itô formula we derive
\[\begin{array}{r}\displaystyle U(t)=U(0)+{\underset{0}{\overset{t}{\int }}}U(s)\Bigg[\frac{{c_{2}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}-{a_{2}}(s)+{\sigma _{2}^{2}}(s)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\frac{{\gamma _{2}^{2}}(s,z)}{1+{\gamma _{2}}(s,z)}{\Pi _{1}}(dz)\Bigg]ds-{\underset{0}{\overset{t}{\int }}}U(s){\sigma _{2}}(s)d{w_{2}}(s)\\ {} \displaystyle -{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }U(s)\frac{{\gamma _{2}}(s,z)}{1+{\gamma _{2}}(s,z)}{\tilde{\nu }_{1}}(ds,dz)-{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }U(s)\frac{{\delta _{2}}(s,z)}{1+{\delta _{2}}(s,z)}{\nu _{2}}(ds,dz).\end{array}\]
Then, by applying the Itô formula, we derive, for $0<\theta <1$,
(27)
\[\begin{array}{r}\displaystyle {(1+U(t))^{\theta }}={(1+U(0))^{\theta }}+{\underset{0}{\overset{t}{\int }}}\theta {(1+U(s))^{\theta -2}}\Bigg\{(1+U(s))U(s)\\ {} \displaystyle \times \bigg[\frac{{c_{2}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}-{a_{2}}(s)+{\sigma _{2}^{2}}(s)\hspace{-0.1667em}+\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\frac{{\gamma _{2}^{2}}(s,z)}{1+{\gamma _{2}}(s,z)}{\Pi _{1}}(dz)\bigg]\\ {} \displaystyle +\frac{\theta -1}{2}{U^{2}}(s){\sigma _{2}^{2}}(s)\\ {} \displaystyle +\frac{1}{\theta }\underset{\mathbb{R}}{\int }\bigg[{(1+U(s))^{2}}\bigg({\bigg(\frac{1+U(s)+{\gamma _{2}}(s,z)}{(1+{\gamma _{2}}(s,z))(1+U(s))}\bigg)^{\theta }}-1\bigg)\\ {} \displaystyle +\theta (1+U(s))\frac{U(s){\gamma _{2}}(s,z)}{1+{\gamma _{2}}(s,z)}\bigg]{\Pi _{1}}(dz)\\ {} \displaystyle +\frac{1}{\theta }\underset{\mathbb{R}}{\int }{(1+U(s))^{2}}\bigg[{\bigg(\frac{1+U(s)+{\delta _{2}}(s,z)}{(1+{\delta _{2}}(s,z))(1+U(s))}\bigg)^{\theta }}-1\bigg]{\Pi _{2}}(dz)\Bigg\}ds\\ {} \displaystyle -{\underset{0}{\overset{t}{\int }}}\theta {(1+U(s))^{\theta -1}}U(s){\sigma _{2}}(s)d{w_{2}}(s)\\ {} \displaystyle +{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\bigg[{\bigg(1+\frac{U(s)}{1+{\gamma _{2}}(s,z)}\bigg)^{\theta }}-{(1+U(s))^{\theta }}\bigg]{\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\bigg[{\bigg(1+\frac{U(s)}{1+{\delta _{2}}(s,z)}\bigg)^{\theta }}-{(1+U(s))^{\theta }}\bigg]{\tilde{\nu }_{2}}(ds,dz)\\ {} \displaystyle ={(1+U(0))^{\theta }}+{\underset{0}{\overset{t}{\int }}}\theta {(1+U(s))^{\theta -2}}J(s)ds\\ {} \displaystyle -{I_{1,stoch}}(t)+{I_{2,stoch}}(t)+{I_{3,stoch}}(t),\end{array}\]
where ${I_{j,stoch}}(t),j=\overline{1,3}$, are the corresponding stochastic integrals in (27). Under Assumption 1 there exist constants $|{K_{1}}(\theta )|<\infty $, $|{K_{2}}(\theta )|<\infty $, such that for the process $J(t)$ we have the estimate
\[\begin{array}{r}\displaystyle J(t)\le (1+U(t))U(t)\Bigg[-{a_{2}}(t)+\frac{{c_{2\sup }}{U^{-1}}(t)}{{m_{inf}}}+{\sigma _{2}^{2}}(t)\hspace{-0.1667em}\hspace{-0.1667em}\phantom{\underset{\mathbb{R}}{\int }}\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\frac{{\gamma _{2}^{2}}(s,z)}{1+{\gamma _{2}}(s,z)}{\Pi _{1}}(dz)\Bigg]+\frac{\theta -1}{2}{U^{2}}(s){\sigma _{2}^{2}}(s)\\ {} \displaystyle +\frac{1}{\theta }\underset{\mathbb{R}}{\int }\Bigg[{(1+U(s))^{2}}\Bigg({\bigg(\frac{1}{1+{\gamma _{2}}(s,z)}+\frac{1}{1+U(s)}\bigg)^{\theta }}-1\Bigg)\\ {} \displaystyle +\theta (1+U(s))\frac{U(s){\gamma _{2}}(s,z)}{1+{\gamma _{2}}(s,z)}\bigg]{\Pi _{1}}(dz)\\ {} \displaystyle +\frac{1}{\theta }\underset{\mathbb{R}}{\int }{(1+U(s))^{2}}\Bigg[{\bigg(\frac{1}{1+{\delta _{2}}(s,z)}+\frac{1}{1+U(s)}\bigg)^{\theta }}-1\Bigg]{\Pi _{2}}(dz)\\ {} \displaystyle \le {U^{2}}(t)\Bigg[-{a_{2}}(t)+\frac{{\sigma _{2}^{2}}(t)}{2}+\underset{\mathbb{R}}{\int }{\gamma _{2}}(t,z){\Pi _{1}}(dz)+\frac{\theta }{2}{\sigma _{2}^{2}}(t)\\ {} \displaystyle +\frac{1}{\theta }\underset{\mathbb{R}}{\int }[{(1+{\gamma _{2}}(t,z))^{-\theta }}-1]{\Pi _{1}}(dz)+\frac{1}{\theta }\underset{\mathbb{R}}{\int }[{(1+{\delta _{2}}(t,z))^{-\theta }}-1]{\Pi _{2}}(dz)\Bigg]\\ {} \displaystyle +{K_{1}}(\theta )U(t)+{K_{2}}(\theta )=-{K_{0}}(t,\theta ){U^{2}}(t)+{K_{1}}(\theta )U(t)+{K_{2}}(\theta ),\end{array}\]
where we used the inequality ${(x+y)^{\theta }}\le {x^{\theta }}+\theta {x^{\theta -1}}y$, $0<\theta <1$, $x,y>0$. Due to
\[\begin{array}{r}\displaystyle \underset{\theta \to 0+}{\lim }\Bigg[\frac{\theta }{2}{\sigma _{2}^{2}}(t)+\frac{1}{\theta }\underset{\mathbb{R}}{\int }[{(1+{\gamma _{2}}(t,z))^{-\theta }}-1]{\Pi _{1}}(dz)\\ {} \displaystyle +\frac{1}{\theta }\underset{\mathbb{R}}{\int }[{(1+{\delta _{2}}(t,z))^{-\theta }}-1]{\Pi _{2}}(dz)+\underset{\mathbb{R}}{\int }\ln (1+{\gamma _{2}}(t,z)){\Pi _{1}}(dz)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\ln (1+{\delta _{2}}(t,z)){\Pi _{2}}(dz)\Bigg]=\underset{\theta \to 0+}{\lim }\Delta (\theta )=0,\end{array}\]
and the condition ${p_{2\inf }}>0$ we can choose a sufficiently small $0<\theta <1$ so that
\[ {K_{0}}(\theta )=\underset{t\ge 0}{\inf }{K_{0}}(t,\theta )=\underset{t\ge 0}{\inf }[{p_{2}}(t)-\Delta (\theta )]={p_{2\inf }}-\Delta (\theta )>0\]
is satisfied. So, from (27) and the estimate for $J(t)$ we derive
(28)
\[\begin{array}{r}\displaystyle d\big[{(1+U(t))^{\theta }}\big]\le \theta {(1+U(t))^{\theta -2}}[-{K_{0}}(\theta ){U^{2}}(t)+{K_{1}}(\theta )U(t)+{K_{2}}(\theta )]dt\\ {} \displaystyle -\theta {(1+U(t))^{\theta -1}}U(t){\sigma _{2}}(t)d{w_{2}}(t)+\underset{\mathbb{R}}{\int }\bigg[{\Big(1+\frac{U(t)}{1+{\gamma _{2}}(t,z)}\Big)^{\theta }}\\ {} \displaystyle -{(1\hspace{-0.1667em}+\hspace{-0.1667em}U(t))^{\theta }}\bigg]{\tilde{\nu }_{1}}(dt,dz)\hspace{-0.1667em}+\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\bigg[{\bigg(1\hspace{-0.1667em}+\hspace{-0.1667em}\frac{U(t)}{1+{\delta _{2}}(t,z)}\bigg)^{\theta }}\hspace{-0.1667em}\hspace{-0.1667em}-\hspace{-0.1667em}{(1\hspace{-0.1667em}+\hspace{-0.1667em}U(t))^{\theta }}\bigg]{\tilde{\nu }_{2}}(dt,dz).\end{array}\]
By the Itô formula and (28) we have
(29)
\[\begin{array}{r}\displaystyle d\left[{e^{\lambda t}}{(1+U(t))^{\theta }}\right]=\lambda {e^{\lambda t}}{(1+U(t))^{\theta }}dt+{e^{\lambda t}}d\left[{(1+U(t))^{\theta }}\right]\\ {} \displaystyle \le {e^{\lambda t}}\theta {(1+U(t))^{\theta -2}}\bigg[-\bigg({K_{0}}(\theta )-\frac{\lambda }{\theta }\bigg){U^{2}}(t)+\bigg({K_{1}}(\theta )+\frac{2\lambda }{\theta }\bigg)U(t)\\ {} \displaystyle +{K_{2}}(\theta )+\frac{\lambda }{\theta }\bigg]dt-\theta {e^{\lambda t}}{(1+U(t))^{\theta -1}}U(t){\sigma _{2}}(t)d{w_{2}}(t)\\ {} \displaystyle +{e^{\lambda t}}\underset{\mathbb{R}}{\int }\bigg[{\bigg(1+\frac{U(t)}{1+{\gamma _{2}}(t,z)}\bigg)^{\theta }}-{(1+U(t))^{\theta }}\bigg]{\tilde{\nu }_{1}}(dt,dz)\\ {} \displaystyle +{e^{\lambda t}}\underset{\mathbb{R}}{\int }\bigg[{\bigg(1+\frac{U(t)}{1+{\delta _{2}}(t,z)}\bigg)^{\theta }}-{(1+U(t))^{\theta }}\bigg]{\tilde{\nu }_{2}}(dt,dz).\end{array}\]
Let us choose $\lambda =\lambda (\theta )>0$, such that ${K_{0}}(\theta )-\lambda /\theta >0$. Then there is a constant $K>0$, such that
(30)
\[\begin{array}{r}\displaystyle {(1+U(t))^{\theta -2}}\bigg[-\bigg({K_{0}}(\theta )-\frac{\lambda }{\theta }\bigg){U^{2}}(t)\\ {} \displaystyle +\bigg({K_{1}}(\theta )+\frac{2\lambda }{\theta }\bigg)U(t)+{K_{2}}(\theta )+\frac{\lambda }{\theta }\bigg]\le K.\end{array}\]
Let ${\tau _{n}}$ be the stopping time defined in Theorem 1. Then by integrating (29), using (30) and taking the expectation we obtain
\[ \mathrm{E}\left[{e^{\lambda (t\wedge {\tau _{n}})}}{(1+U(t\wedge {\tau _{n}}))^{\theta }}\right]\le {\left(1+\frac{1}{{x_{20}}}\right)^{\theta }}+\frac{\theta }{\lambda }K\left({e^{\lambda t}}-1\right).\]
Letting $n\to \infty $ leads to the estimate
(31)
\[ {e^{t}}\mathrm{E}\left[{(1+U(t))^{\theta }}\right]\le {\left(1+\frac{1}{{x_{20}}}\right)^{\theta }}+\frac{\theta }{\lambda }K\left({e^{\lambda t}}-1\right).\]
From (31) we obtain
\[\begin{array}{r}\displaystyle \underset{t\to \infty }{\limsup }\mathrm{E}\left[{\left(\frac{1}{{x_{2}}(t)}\right)^{\theta }}\right]=\underset{t\to \infty }{\limsup }\mathrm{E}\left[{U^{\theta }}(t)\right]\\ {} \displaystyle \le \underset{t\to \infty }{\limsup }\mathrm{E}\left[{(1+U(t))^{\theta }}\right]\le \frac{\theta }{\lambda (\theta )}K,\end{array}\]
this implies (26).  □

3 The long-time behaviour

Definition 1 ([8]).
The solution $X(t)$ to the system (3) is said to be stochastically ultimately bounded, if for any $\varepsilon \in (0,1)$, there is a positive constant $\chi =\chi (\varepsilon )>0$, such that for any initial value ${X_{0}}\in {\mathbb{R}_{+}^{2}}$, the solution to the system (3) has the property that
\[ \underset{t\to \infty }{\limsup }\mathrm{P}\left\{|X(t)|>\chi \right\}<\varepsilon .\]
In what follows in this section we will assume that Assumption 1 holds.
Theorem 2.
The solution $X(t)$ to the system (3) with the initial value ${X_{0}}\in {\mathbb{R}_{+}^{2}}$ is stochastically ultimately bounded.
Proof.
From Lemma 3 we have the estimate
(32)
\[ \underset{t\to \infty }{\limsup }E[{x_{i}}(t)]\le {K_{i}},\hspace{2.5pt}i=1,2.\]
For $X=({x_{1}},{x_{2}})\in {\mathbb{R}_{+}^{2}}$ we have $|X|\le {x_{1}}+{x_{2}}$, therefore, from (32) ${\limsup _{t\to \infty }}E[|X(t)|]\le L={K_{1}}+{K_{2}}$. Let $\chi >L/\varepsilon $, $\forall \varepsilon \in (0,1)$. Then applying the Chebyshev inequality yields
\[ \underset{t\to \infty }{\limsup }\mathrm{P}\{|X(t)|>\chi \}\le \frac{1}{\chi }\lim \underset{t\to \infty }{\sup }E[|X(t)|]\le \frac{L}{\chi }<\varepsilon .\]
 □
The property of stochastic permanence is important since it means the long-time survival in a population dynamics.
Definition 2.
The population density $x(t)$ is said to be stochastically permanent if for any $\varepsilon >0$, there are positive constants $H=H(\varepsilon )$, $h=h(\varepsilon )$ such that
\[ \underset{t\to \infty }{\liminf }\mathrm{P}\{x(t)\le H\}\ge 1-\varepsilon ,\hspace{1em}\underset{t\to \infty }{\liminf }\mathrm{P}\{x(t)\ge h\}\ge 1-\varepsilon ,\]
for any inial value ${x_{0}}>0$.
Theorem 3.
If ${p_{2\inf }}>0$, where ${p_{2}}(t)={a_{2}}(t)-{\beta _{2}}(t)$, then for any initial value ${x_{20}}>0$, the predator population density ${x_{2}}(t)$ is stochastically permanent.
Proof.
From Lemma 3 we have estimate
\[ \underset{t\to \infty }{\limsup }E[{x_{2}}(t)]\le K.\]
Thus for any given $\varepsilon >0$, let $H=K/\varepsilon $, by virtue of Chebyshev’s inequality, we can derive that
\[ \underset{t\to \infty }{\limsup }\mathrm{P}\{{x_{2}}(t)\ge H\}\le \frac{1}{H}\underset{t\to \infty }{\limsup }E[{x_{2}}(t)]\le \varepsilon .\]
Consequently, $\underset{t\to \infty }{\liminf }\mathrm{P}\{{x_{2}}(t)\le H\}\ge 1-\varepsilon $.
From Lemma 4 we have the estimate
\[ \underset{t\to \infty }{\limsup }\mathrm{E}\left[{\left(\frac{1}{{x_{2}}(t)}\right)^{\theta }}\right]\le K(\theta ),\hspace{2.5pt}0<\theta <1.\]
For any given $\varepsilon >0$, let $h={(\varepsilon /K(\theta ))^{1/\theta }}$, then by Chebyshev’s inequality, we have
\[\begin{array}{r}\displaystyle \underset{t\to \infty }{\limsup }\mathrm{P}\{{x_{2}}(t)<h\}\le \underset{t\to \infty }{\limsup }\mathrm{P}\left\{{\left(\frac{1}{{x_{2}}(t)}\right)^{\theta }}>{h^{-\theta }}\right\}\\ {} \displaystyle \le {h^{\theta }}\underset{t\to \infty }{\limsup }\mathrm{E}\left[{\left(\frac{1}{{x_{2}}(t)}\right)^{\theta }}\right]\le \varepsilon .\end{array}\]
Consequently, $\underset{t\to \infty }{\liminf }\mathrm{P}\{{x_{2}}(t)\ge h\}\ge 1-\varepsilon $.  □
Theorem 4.
If the predator is absent, i.e. ${x_{2}}(t)=0$ a.s., and ${p_{1\inf }}>0$, where ${p_{1}}(t)={a_{1}}(t)-{\beta _{1}}(t)$, then for any initial value ${x_{10}}>0$, the prey population density ${x_{1}}(t)$ is stochastically permanent.
Proof.
From Lemma 3 we have the estimate
\[ \underset{t\to \infty }{\limsup }E[{x_{1}}(t)]\le K.\]
Thus for any given $\varepsilon >0$, let $H=K/\varepsilon $, by virtue of Chebyshev’s inequality, we can derive that
\[ \underset{t\to \infty }{\limsup }\mathrm{P}\{{x_{1}}(t)\ge H\}\le \frac{1}{H}\underset{t\to \infty }{\limsup }E[{x_{1}}(t)]\le \varepsilon .\]
Consequently, $\underset{t\to \infty }{\liminf }\mathrm{P}\{{x_{1}}(t)\le H\}\ge 1-\varepsilon $.
For the process $U(t)=1/{x_{1}}(t)$, by the Itô formula we have
\[\begin{array}{r}\displaystyle U(t)=U(0)+{\underset{0}{\overset{t}{\int }}}U(s)\Bigg[{b_{1}}(s){x_{1}}(s)-{a_{1}}(s)+{\sigma _{1}^{2}}(s)\\ {} \displaystyle +\underset{\mathbb{R}}{\int }\frac{{\gamma _{1}^{2}}(s,z)}{1+{\gamma _{1}}(s,z)}{\Pi _{1}}(dz)\Bigg]ds-{\underset{0}{\overset{t}{\int }}}U(s){\sigma _{1}}(s)d{w_{1}}(s)\\ {} \displaystyle -{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }U(s)\frac{{\gamma _{1}}(s,z)}{1+{\gamma _{1}}(s,z)}{\tilde{\nu }_{1}}(ds,dz)-{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }U(s)\frac{{\delta _{1}}(s,z)}{1+{\delta _{1}}(s,z)}{\nu _{2}}(ds,dz).\end{array}\]
Then, using the same arguments as in the proof of Lemma 4 we can derive the estimate
\[ \underset{t\to \infty }{\limsup }\mathrm{E}\left[{\left(\frac{1}{{x_{1}}(t)}\right)^{\theta }}\right]\le K(\theta ),\hspace{2.5pt}0<\theta <1.\]
For any given $\varepsilon >0$, let $h={(\varepsilon /K(\theta ))^{1/\theta }}$. Then by Chebyshev’s inequality, we have
\[\begin{array}{r}\displaystyle \underset{t\to \infty }{\limsup }\mathrm{P}\{{x_{1}}(t)<h\}=\underset{t\to \infty }{\limsup }\mathrm{P}\left\{{\left(\frac{1}{{x_{1}}(t)}\right)^{\theta }}>{h^{-\theta }}\right\}\\ {} \displaystyle \le {h^{\theta }}\underset{t\to \infty }{\limsup }\mathrm{E}\left[{\left(\frac{1}{{x_{1}}(t)}\right)^{\theta }}\right]\le \varepsilon .\end{array}\]
Consequently, $\underset{t\to \infty }{\liminf }\mathrm{P}\{{x_{1}}(t)\ge h\}\ge 1-\varepsilon $.  □
Remark 1.
If the predator is absent, i.e. ${x_{2}}(t)=0$ a.s., then the equation for the prey ${x_{1}}(t)$ has the logistic form. So, Theorem 4 gives us the sufficient conditions for the stochastic permanence of the solution to the stochastic nonautonomous logistic equation disturbed by white noise, centered and noncentered Poisson noises.
Definition 3.
The solution $X(t)=({x_{1}}(t),{x_{2}}(t))$, $t\ge 0$, to equation (3) will be said extinct if for every initial data ${X_{0}}\in {\mathbb{R}_{+}^{2}}$, we have ${\lim \nolimits_{t\to \infty }}{x_{i}}(t)=0$ almost surely (a.s.), $i=1,2$.
Theorem 5.
If
\[ {\bar{p}_{i}^{\ast }}=\underset{t\to \infty }{\limsup }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{p_{i}}(s)ds<0,\hspace{2.5pt}\textit{where}\hspace{2.5pt}{p_{i}}(t)={a_{i}}(t)-{\beta _{i}}(t),\hspace{2.5pt}i=1,2,\]
then the solution $X(t)$ to equation (3) with the initial condition ${X_{0}}\in {\mathbb{R}_{+}^{2}}$ will be extinct.
Proof.
By the Itô formula, we have
(33)
\[\begin{array}{r}\displaystyle d\ln {x_{i}}(t)=\left[{a_{i}}(t)-{b_{i}}(t){x_{i}}(t)-\frac{{c_{i}}(t){x_{2}}(t)}{m(t)+{x_{1}}(t)}-{\beta _{i}}(t)\right]dt+d{M_{i}}(t)\\ {} \displaystyle \le [{a_{i}}(t)-{\beta _{i}}(t)]dt+d{M_{i}}(t),\hspace{2.5pt}i=1,2,\end{array}\]
where the martingale
(34)
\[\begin{array}{r}\displaystyle {M_{i}}(t)={\underset{0}{\overset{t}{\int }}}{\sigma _{i}}(s)d{w_{i}}(s)+{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\ln (1+{\gamma _{i}}(s,z)){\tilde{\nu }_{1}}(ds,dz)\\ {} \displaystyle +{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }\ln (1+{\delta _{i}}(s,z)){\tilde{\nu }_{2}}(ds,dz),\hspace{2.5pt}i=1,2,\end{array}\]
has quadratic variation
\[\begin{array}{r}\displaystyle \langle {M_{i}},{M_{i}}\rangle (t)={\underset{0}{\overset{t}{\int }}}{\sigma _{i}^{2}}(s)ds+{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{\ln ^{2}}(1+{\gamma _{i}}(s,z)){\Pi _{1}}(dz)ds\\ {} \displaystyle +{\underset{0}{\overset{t}{\int }}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{\mathbb{R}}{\int }{\ln ^{2}}(1+{\delta _{i}}(s,z)){\Pi _{2}}(dz)ds\le Kt,\hspace{2.5pt}i=1,2.\end{array}\]
Then the strong law of large numbers for local martingales ([10]) yields ${\lim \nolimits_{t\to \infty }}{M_{i}}(t)/t=0$, $i=1,2$, a.s. Therefore, from (33) we obtain
\[ \underset{t\to \infty }{\limsup }\frac{\ln {x_{i}}(t)}{t}\le \underset{t\to \infty }{\limsup }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{p_{i}}(s)ds<0,\hspace{1em}\text{a.s.}\]
So, ${\lim \nolimits_{t\to \infty }}{x_{i}}(t)=0$, $i=1,2$, a.s.  □
Definition 4 ([11]).
The population density $x(t)$ will be said nonpersistent in the mean if
\[ \underset{t\to \infty }{\lim }\frac{1}{t}{\int _{0}^{t}}x(s)ds=0\hspace{2.5pt}\text{a.s.}\]
Theorem 6.
If ${\bar{p}_{1}^{\ast }}=0$, then the prey population density ${x_{1}}(t)$ with the initial condition ${x_{10}}>0$ will be nonpersistent in the mean.
Proof.
From the first equality in (33) for $i=1$ we have
(35)
\[ \ln {x_{1}}(t)\le \ln {x_{10}}+{\underset{0}{\overset{t}{\int }}}{p_{1}}(s)ds-{b_{1\inf }}{\underset{0}{\overset{t}{\int }}}{x_{1}}(s)ds+{M_{1}}(t),\]
where the martingale ${M_{1}}(t)$ is defined in (34). From the definition of ${\bar{p}_{1}^{\ast }}$ and the strong law of large numbers for ${M_{1}}(t)$ it follows, that $\forall \varepsilon >0$, $\exists {t_{0}}\ge 0$, and $\exists {\Omega _{\varepsilon }}\subset \Omega $, with $\mathrm{P}({\Omega _{\varepsilon }})\ge 1-\varepsilon $, such that
\[ \frac{1}{t}{\underset{0}{\overset{t}{\int }}}{p_{1}}(s)ds\le {\bar{p}_{1}^{\ast }}+\frac{\varepsilon }{2},\hspace{2.5pt}\frac{{M_{1}}(t)}{t}\le \frac{\varepsilon }{2},\hspace{2.5pt}\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\]
So, from (35) we derive
(36)
\[\begin{array}{r}\displaystyle \ln {x_{1}}(t)-\ln {x_{10}}\le t({\bar{p}_{1}^{\ast }}+\varepsilon )-{b_{1\inf }}{\underset{0}{\overset{t}{\int }}}{x_{1}}(s)ds\\ {} \displaystyle =t\varepsilon -{b_{1\inf }}{\underset{0}{\overset{t}{\int }}}{x_{1}}(s)ds,\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\end{array}\]
Let ${y_{1}}(t)={\textstyle\int _{0}^{t}}{x_{1}}(s)ds$, then from (36) we have
\[\begin{array}{r}\displaystyle \ln \left(\frac{d{y_{1}}(t)}{dt}\right)\le \varepsilon t-{b_{1\inf }}{y_{1}}(t)+\ln {x_{10}}\\ {} \displaystyle \Rightarrow {e^{{b_{1\inf }}{y_{1}}(t)}}\frac{d{y_{1}}(t)}{dt}\le {x_{10}}{e^{\varepsilon t}},\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\end{array}\]
By integrating the last inequality from ${t_{0}}$ to t we obtain
\[ {e^{{b_{1\inf }}{y_{1}}(t)}}\le \frac{{b_{1\inf }}{x_{10}}}{\varepsilon }\left({e^{\varepsilon t}}-{e^{\varepsilon {t_{0}}}}\right)+{e^{{b_{1\inf }}{y_{1}}({t_{0}})}},\hspace{2.5pt}\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\]
So,
\[ {y_{1}}(t)\le \frac{1}{{b_{1\inf }}}\ln \left[{e^{{b_{1\inf }}{y_{1}}({t_{0}})}}+\frac{{b_{1\inf }}{x_{10}}}{\varepsilon }\left({e^{\varepsilon t}}-{e^{\varepsilon {t_{0}}}}\right)\right],\hspace{2.5pt}\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }},\]
and therefore
\[ \underset{t\to \infty }{\limsup }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{x_{1}}(s)ds\le \frac{\varepsilon }{{b_{1\inf }}},\hspace{2.5pt}\forall \omega \in {\Omega _{\varepsilon }}.\]
Since $\varepsilon >0$ is arbitrary and ${x_{1}}(t)>0$ a.s., we have
\[ \underset{t\to \infty }{\lim }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{x_{1}}(s)ds=0\hspace{2.5pt}a.s.\]
 □
Theorem 7.
If ${\bar{p}_{2}^{\ast }}=0$ and ${\bar{p}_{1}^{\ast }}<0$, then the predator population density ${x_{2}}(t)$ with the initial condition ${x_{20}}>0$ will be nonpersistent in the mean.
Proof.
From the first equality in (33) with $i=2$ we have, for $c={c_{2\inf }}/{m_{\sup }}$,
(37)
\[\begin{array}{r}\displaystyle \ln {x_{2}}(t)\le \ln {x_{20}}+{\underset{0}{\overset{t}{\int }}}{p_{2}}(s)ds-{c_{2\inf }}{\underset{0}{\overset{t}{\int }}}\frac{{x_{2}}(s)}{m(s)+{x_{1}}(s)}ds+{M_{2}}(t)\\ {} \displaystyle =\ln {x_{20}}\hspace{-0.1667em}+\hspace{-0.1667em}{\underset{0}{\overset{t}{\int }}}{p_{2}}(s)ds\hspace{-0.1667em}-\hspace{-0.1667em}{c_{2\inf }}{\underset{0}{\overset{t}{\int }}}\frac{1}{m(s)}\left[{x_{2}}(s)\hspace{-0.1667em}-\hspace{-0.1667em}\frac{{x_{1}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}\right]ds\hspace{-0.1667em}+\hspace{-0.1667em}{M_{2}}(t)\\ {} \displaystyle \le \ln {x_{20}}+{\underset{0}{\overset{t}{\int }}}{p_{2}}(s)ds-c{\underset{0}{\overset{t}{\int }}}{x_{2}}(s)ds+c{\underset{0}{\overset{t}{\int }}}\frac{{x_{1}}(s){x_{2}}(s)}{{m_{\sup }}+{x_{1}}(s)}ds+{M_{2}}(t),\end{array}\]
where the martingale ${M_{2}}(t)$ is defined in (34). From Theorem 5, the definition of ${\bar{p}_{2}^{\ast }}$ and the strong law of large numbers for ${M_{2}}(t)$ it follows, that $\forall \varepsilon >0$, $\exists {t_{0}}\ge 0$, and $\exists {\Omega _{\varepsilon }}\subset \Omega $ with $\mathrm{P}({\Omega _{\varepsilon }})\ge 1-\varepsilon $, such that
\[ \frac{1}{t}{\underset{0}{\overset{t}{\int }}}{p_{2}}(s)ds\le {\bar{p}_{2}^{\ast }}+\frac{\varepsilon }{2},\hspace{2.5pt}\frac{{M_{2}}(t)}{t}\le \frac{\varepsilon }{2},\hspace{2.5pt}\frac{{x_{1}}(t)}{{m_{\sup }}+{x_{1}}(t)}\le \varepsilon ,\hspace{2.5pt}\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\]
So, from (37) we derive
(38)
\[\begin{array}{r}\displaystyle \ln {x_{2}}(t)-\ln {x_{20}}\le t({\bar{p}_{2}^{\ast }}+\varepsilon )-c(1-\varepsilon ){\underset{{t_{0}}}{\overset{t}{\int }}}{x_{2}}(s)ds\\ {} \displaystyle =t\varepsilon -c(1-\varepsilon ){\underset{{t_{0}}}{\overset{t}{\int }}}{x_{2}}(s)ds,\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\end{array}\]
Let ${y_{2}}(t)={\textstyle\int _{{t_{0}}}^{t}}{x_{2}}(s)ds$. Then from (38) we have
\[\begin{array}{r}\displaystyle \ln \left(\frac{d{y_{2}}(t)}{dt}\right)\le \varepsilon t-c(1-\varepsilon ){y_{2}}(t)+\ln {x_{20}}\\ {} \displaystyle \Rightarrow {e^{c(1-\varepsilon ){y_{2}}(t)}}\frac{d{y_{2}}(t)}{dt}\le {x_{20}}{e^{\varepsilon t}},\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\end{array}\]
By integrating the last inequality from ${t_{0}}$ to t we obtain
\[ {e^{c(1-\varepsilon ){y_{2}}(t)}}\le \frac{c(1-\varepsilon ){x_{20}}}{\varepsilon }\left({e^{\varepsilon t}}-{e^{\varepsilon {t_{0}}}}\right)+1,\hspace{2.5pt}\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }}.\]
So,
\[ {y_{2}}(t)\le \frac{1}{c(1-\varepsilon )}\ln \left[1+\frac{c(1-\varepsilon ){x_{20}}}{\varepsilon }\left({e^{\varepsilon t}}-{e^{\varepsilon {t_{0}}}}\right)\right],\hspace{2.5pt}\forall t\ge {t_{0}},\hspace{2.5pt}\omega \in {\Omega _{\varepsilon }},\]
and therefore
\[ \underset{t\to \infty }{\limsup }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{x_{2}}(s)ds\le \frac{\varepsilon }{c(1-\varepsilon )},\hspace{2.5pt}\forall \omega \in {\Omega _{\varepsilon }}.\]
Since $\varepsilon >0$ is arbitrary and ${x_{2}}(t)>0$ a.s., we have
\[ \underset{t\to \infty }{\lim }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{x_{2}}(s)ds=0\hspace{2.5pt}a.s.\]
 □
Definition 5 ([11]).
The population density $x(t)$ will be said weakly persistent in the mean if
\[ {\bar{x}^{\ast }}=\underset{t\to \infty }{\limsup }\frac{1}{t}{\int _{0}^{t}}x(s)ds>0\hspace{2.5pt}\text{a.s.}\]
Theorem 8.
If ${\bar{p}_{2}^{\ast }}>0$, then the predator population density ${x_{2}}(t)$ with the initial condition ${x_{20}}>0$ will be weakly persistent in the mean.
Proof.
If the assertion of theorem is not true, then $\mathrm{P}\{{\bar{x}_{2}^{\ast }}=0\}>0$. From the first equality in (33) we get
\[\begin{array}{r}\displaystyle \frac{1}{t}(\ln {x_{2}}(t)-\ln {x_{20}})=\frac{1}{t}{\int _{0}^{t}}{p_{2}}(s)ds-\frac{1}{t}{\int _{0}^{t}}\frac{{c_{2}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}ds+\frac{{M_{2}}(t)}{t}\\ {} \displaystyle \ge \frac{1}{t}{\int _{0}^{t}}{p_{2}}(s)ds-\frac{{c_{2\sup }}}{{m_{\inf }}t}{\int _{0}^{t}}{x_{2}}(s)ds+\frac{{M_{2}}(t)}{t},\end{array}\]
where the martingale ${M_{2}}(t)$ is defined in (34). For $\forall \omega \in \{\omega \in \Omega |\hspace{2.5pt}{\bar{x}_{2}^{\ast }}=0\}$ in virtue of the strong law of large numbers for the martingale ${M_{2}}(t)$ we have
\[ \underset{t\to \infty }{\limsup }\frac{\ln {x_{2}}(t)}{t}\ge {\bar{p}_{2}^{\ast }}>0.\]
Therefore,
\[ \mathrm{P}\left\{\omega \in \Omega |\hspace{2.5pt}\underset{t\to \infty }{\limsup }\frac{\ln {x_{2}}(t)}{t}>0\right\}>0.\]
But from Lemma 2 we have
\[ \mathrm{P}\left\{\omega \in \Omega |\hspace{2.5pt}\underset{t\to \infty }{\limsup }\frac{\ln {x_{2}}(t)}{t}\le 0\right\}=1.\]
This is a contradiction.  □
Theorem 9.
If ${\bar{p}_{1}^{\ast }}>0$ and ${\bar{p}_{2}^{\ast }}<0$, then the prey population density ${x_{1}}(t)$ with the initial condition ${x_{10}}>0$ will be weakly persistent in the mean.
Proof.
Let $\mathrm{P}\{{\bar{x}_{1}^{\ast }}=0\}>0$. From the first equality in (33) with $i=1$ we get
(39)
\[\begin{array}{r}\displaystyle \frac{1}{t}(\ln {x_{1}}(t)-\ln {x_{10}})=\frac{1}{t}{\int _{0}^{t}}{p_{1}}(s)ds-\frac{1}{t}{\int _{0}^{t}}{b_{1}}(s){x_{1}}(s)ds\\ {} \displaystyle -\frac{1}{t}{\int _{0}^{t}}\frac{{c_{1}}(s){x_{2}}(s)}{m(s)+{x_{1}}(s)}ds+\frac{{M_{1}}(t)}{t}\\ {} \displaystyle \ge \frac{1}{t}{\int _{0}^{t}}{p_{1}}(s)ds-\frac{{b_{1\sup }}}{t}{\int _{0}^{t}}{x_{1}}(s)ds-\frac{{c_{1\sup }}}{{m_{\inf }}t}{\int _{0}^{t}}{x_{2}}(s)ds+\frac{{M_{1}}(t)}{t}\end{array}\]
where the martingale ${M_{1}}(t)$ is defined in (34). From the definition of ${\bar{p}_{1}^{\ast }}$, the strong law of large numbers for the martingale ${M_{1}}(t)$ and Theorem 2 for ${x_{2}}(t)$, we have $\forall \varepsilon >0$, $\exists {t_{0}}\ge 0$, $\exists {\Omega _{\varepsilon }}\subset \Omega $ with $\mathrm{P}({\Omega _{\varepsilon }})\ge 1-\varepsilon $, such that
\[ \frac{1}{t}{\underset{0}{\overset{t}{\int }}}{p_{1}}(s)ds\ge {\bar{p}_{1}^{\ast }}-\frac{\varepsilon }{3},\hspace{2.5pt}\frac{{M_{1}}(t)}{t}\ge -\frac{\varepsilon }{3},\hspace{2.5pt}\frac{1}{t}{\int _{0}^{t}}{x_{2}}(s)ds\le \frac{\varepsilon {m_{\inf }}}{3{c_{1\sup }}},\forall t\ge {t_{0}},\omega \in {\Omega _{\varepsilon }}.\]
So, from (39) we get for $\omega \in \{\omega \in \Omega |{\bar{x}_{1}^{\ast }}=0\}\cap {\Omega _{\varepsilon }}$
\[ \underset{t\to \infty }{\limsup }\frac{\ln {x_{1}}(t)}{t}\ge {\bar{p}_{1}^{\ast }}-\varepsilon >0\]
for a sufficiently small $\varepsilon >0$. Therefore,
\[ \mathrm{P}\left\{\omega \in \Omega |\hspace{2.5pt}\underset{t\to \infty }{\limsup }\frac{\ln {x_{1}}(t)}{t}>0\right\}>0.\]
But from Corollary 1
\[ \mathrm{P}\left\{\omega \in \Omega |\hspace{2.5pt}\underset{t\to \infty }{\limsup }\frac{\ln {x_{1}}(t)}{t}\le 0\right\}=1.\]
Therefore we have a contradiction.  □

Acknowledgments

The authors wish to thank the Referees for their very careful reading of the manuscript and very useful comments which allowed us to improve the presentation of the paper.

References

[1] 
Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003). MR2013074. https://doi.org/10.1016/S0893-9659(03)90096-6
[2] 
Borysenko, O.D., Borysenko, D.O.: Persistence and Extinction in Stochastic Nonautonomous Logistic Model of Population Dynamics. Theory Probab. Math. Stat. 2(99), 63–70 (2018). MR3908656. https://doi.org/10.1090/tpms/1080
[3] 
Borysenko, O.D., Borysenko, D.O.: Asymptotic Behavior of the Solution to the Non-Autonomous Stochastic Logistic Differential Equation. Theory Probab. Math. Stat. 2(101), 40–48 (2019)
[4] 
Borysenko, O., Borysenko, O.: Stochastic two-species mutualism model with jumps. Mod. Stoch. Theory Appl. 7(1), 1–15 (2020). MR4085673. https://doi.org/10.15559/20-VMSTA150
[5] 
Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations and its Applications. Naukova Dumka, Kyiv (1982). (In Russian). MR0678374
[6] 
Ji, C.Y., Jiang, D.Q., Shi, N.Z.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009). MR2546763. https://doi.org/10.1016/j.jmaa.2009.05.039
[7] 
Ji, C.Y., Jiang, D.Q., Shi, N.Z.: A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 377, 435–440 (2011). MR2754843. https://doi.org/10.1016/j.jmaa.2010.11.008
[8] 
Li, X., Mao, X.: Population Dynamical Behavior of Non-Autonomous Lotka-Volterra Competitive System with Random Perturbation. Discrete Contin. Dyn. Syst. 24, 523–545 (2009). MR2486589. https://doi.org/10.3934/dcds.2009.24.523
[9] 
Lin, Y., Jiang, D.: Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes. Int. J. Biomath. 9(3), 1650039 (2016). (18 p.). MR3463830. https://doi.org/10.1142/S179352451650039X
[10] 
Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980). MR0573205. https://doi.org/10.1080/17442508008833146
[11] 
Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems. J. Math. Anal. Appl. 375, 443–457 (2011). MR2735535. https://doi.org/10.1016/j.jmaa.2010.09.058
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Existence of global solution and some auxiliary lemmas
  • 3 The long-time behaviour
  • Acknowledgments
  • References

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic predator–prey model Leslie–Gower and Holling-type II functional response global solution stochastic ultimate boundedness stochastic permanence extinction nonpersistence in the mean weak persistence in the mean

MSC2010
92D25 60H10 60H30

Metrics
since March 2018
514

Article info
views

366

Full article
views

353

PDF
downloads

119

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    9
Theorem 1.
Theorem 2.
Theorem 3.
Theorem 4.
Theorem 5.
Theorem 6.
Theorem 7.
Theorem 8.
Theorem 9.
Theorem 1.
There exists a unique global solution $X(t)$ to the system (3) for any initial value $X(0)={X_{0}}\in {\mathbb{R}_{+}^{2}}$, and $\mathrm{P}\{X(t)\in {\mathbb{R}_{+}^{2}}\}=1$.
Theorem 2.
The solution $X(t)$ to the system (3) with the initial value ${X_{0}}\in {\mathbb{R}_{+}^{2}}$ is stochastically ultimately bounded.
Theorem 3.
If ${p_{2\inf }}>0$, where ${p_{2}}(t)={a_{2}}(t)-{\beta _{2}}(t)$, then for any initial value ${x_{20}}>0$, the predator population density ${x_{2}}(t)$ is stochastically permanent.
Theorem 4.
If the predator is absent, i.e. ${x_{2}}(t)=0$ a.s., and ${p_{1\inf }}>0$, where ${p_{1}}(t)={a_{1}}(t)-{\beta _{1}}(t)$, then for any initial value ${x_{10}}>0$, the prey population density ${x_{1}}(t)$ is stochastically permanent.
Theorem 5.
If
\[ {\bar{p}_{i}^{\ast }}=\underset{t\to \infty }{\limsup }\frac{1}{t}{\underset{0}{\overset{t}{\int }}}{p_{i}}(s)ds<0,\hspace{2.5pt}\textit{where}\hspace{2.5pt}{p_{i}}(t)={a_{i}}(t)-{\beta _{i}}(t),\hspace{2.5pt}i=1,2,\]
then the solution $X(t)$ to equation (3) with the initial condition ${X_{0}}\in {\mathbb{R}_{+}^{2}}$ will be extinct.
Theorem 6.
If ${\bar{p}_{1}^{\ast }}=0$, then the prey population density ${x_{1}}(t)$ with the initial condition ${x_{10}}>0$ will be nonpersistent in the mean.
Theorem 7.
If ${\bar{p}_{2}^{\ast }}=0$ and ${\bar{p}_{1}^{\ast }}<0$, then the predator population density ${x_{2}}(t)$ with the initial condition ${x_{20}}>0$ will be nonpersistent in the mean.
Theorem 8.
If ${\bar{p}_{2}^{\ast }}>0$, then the predator population density ${x_{2}}(t)$ with the initial condition ${x_{20}}>0$ will be weakly persistent in the mean.
Theorem 9.
If ${\bar{p}_{1}^{\ast }}>0$ and ${\bar{p}_{2}^{\ast }}<0$, then the prey population density ${x_{1}}(t)$ with the initial condition ${x_{10}}>0$ will be weakly persistent in the mean.

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy