Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
Volume 2, Issue 1 (2015), pp. 29–49
Pub. online: 11 May 2015
Type: Research Article
Open Access
Received
17 November 2014
17 November 2014
Revised
30 March 2015
30 March 2015
Accepted
24 April 2015
24 April 2015
Published
11 May 2015
11 May 2015
Abstract
We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.
References
Androshchuk, T., Mishura, Y.: Mixed Brownian–fractional Brownian model: Absence of arbitrage and related topics. Stochastics 78(5), 281–300 (2006). MR2270939 (2007k:60198). doi:10.1080/17442500600859317
Azmoodeh, E., Valkeila, E.: Characterization of the quadratic variation of mixed Brownian–fractional Brownian motion. Stat. Inference Stoch. Process. 16(2), 97–112 (2013). MR3071882. doi:10.1007/s11203-013-9079-9
Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc., Ser. B, Stat. Methodol. 64(2), 253–280 (2002). MR1904704 (2003b:60105). doi:10.1111/1467-9868.00336
Bender, C., Sottinen, T., Valkeila, E.: Arbitrage with fractional Brownian motion? Theory Stoch. Process. 13(1–2), 23–34 (2007). MR2343807 (2008d:91038)
Bender, C., Sottinen, T., Valkeila, E.: Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch. 12(4), 441–468 (2008). MR2447408 (2009j:91078). doi:10.1007/s00780-008-0074-8
Bender, C., Sottinen, T., Valkeila, E.: Fractional processes as models in stochastic finance. In: Advanced Mathematical Methods for Finance, pp. 75–103. Springer, Berlin (2011). MR2792076. doi:10.1007/978-3-642-18412-3_3
Black, F., Scholes, M.: The pricing of options and corporate liabilities [reprint of J. Polit. Econ. 81 (1973), no. 3, 637–654]. In: Financial Risk Measurement and Management. Internat. Lib. Crit. Writ. Econ., vol. 267, pp. 100–117. Edward Elgar, Cheltenham (2012). MR3235225
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. doi:10.2307/3318626
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(3), 463–520 (1994). MR1304434 (95m:90022b). doi:10.1007/BF01450498
Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312(2), 215–250 (1998). MR1671792 (99k:60117). doi:10.1007/s002080050220
Dzhaparidze, K., Spreij, P.: Spectral characterization of the optional quadratic variation process. Stoch. Process. Appl. 54(1), 165–174 (1994). MR1302700. doi:10.1016/0304-4149(94)00011-5
Föllmer, H.: Calcul d’Itô sans probabilités. In: Séminaire de Probabilités, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lecture Notes in Math., vol. 850, pp. 143–150. Springer, Berlin (1981). MR0622559 (82j:60098)
Fukasawa, M.: Central limit theorem for the realized volatility based on tick time sampling. Finance Stoch. 14(2), 209–233 (2010). MR2607763 (2011e:62235). doi:10.1007/s00780-008-0087-3
Hayashi, T., Jacod, J., Yoshida, N.: Irregular sampling and central limit theorems for power variations: The continuous case. Ann. Inst. Henri Poincaré, Probab. Stat. 47(4), 1197–1218 (2011). MR2884231. doi:10.1214/11-AIHP432
Nourdin, I., Peccati, G.: Normal Approximations Using Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press (2012). MR2962301. doi:10.1017/CBO9781139084659
Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer (2006). MR2200233
Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118(4), 614–628 (2008). MR2394845. doi:10.1016/j.spa.2007.05.004
Nualart, D., Peccati, G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005). MR2118863. doi:10.1214/009117904000000621
Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118(2), 251–291 (2000). MR1790083. doi:10.1007/s440-000-8016-7
Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (2004). MR2020294
Schoenmakers, J.G.M., Kloeden, P.E.: Robust option replication for a Black–Scholes model extended with nondeterministic trends. J. Appl. Math. Stoch. Anal. 12(2), 113–120 (1999). MR1701227 (2000g:91030). doi:10.1155/S104895339900012X
Sondermann, D.: Introduction to Stochastic Calculus for Finance: A New Didactic Approach. Springer, Berlin (2006). MR2254170