Entropic Value-at-Risk (EVaR) measure is a convenient coherent risk measure. Due to certain difficulties in finding its analytical representation, it was previously calculated explicitly only for the normal distribution. We succeeded to overcome these difficulties and to calculate Entropic Value-at-Risk (EVaR) measure for Poisson, compound Poisson, Gamma, Laplace, exponential, chi-squared, inverse Gaussian distribution and normal inverse Gaussian distribution with the help of Lambert function that is a special function, generally speaking, with two branches.
The object of investigation is the mixed fractional Brownian motion of the form ${X_{t}}=\kappa {B_{t}^{{H_{1}}}}+\sigma {B_{t}^{{H_{2}}}}$, driven by two independent fractional Brownian motions ${B_{1}^{H}}$ and ${B_{2}^{H}}$ with Hurst parameters ${H_{1}}\lt {H_{2}}$. Strongly consistent estimators of unknown model parameters ${({H_{1}},{H_{2}},{\kappa ^{2}},{\sigma ^{2}})^{\top }}$ are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for $0\lt {H_{1}}\lt {H_{2}}\lt \frac{3}{4}$.
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H < 3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
We investigate the fractional Vasicek model described by the stochastic differential equation $d{X_{t}}=(\alpha -\beta {X_{t}})\hspace{0.1667em}dt+\gamma \hspace{0.1667em}d{B_{t}^{H}}$, ${X_{0}}={x_{0}}$, driven by the fractional Brownian motion ${B^{H}}$ with the known Hurst parameter $H\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters α and β in the non-ergodic case (when $\beta <0$) for arbitrary ${x_{0}}\in \mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular ${x_{0}}=\alpha /\beta $, derive their asymptotic distributions and prove their asymptotic independence.
For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.
with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.