Models of generalized counting processes time-changed by a general inverse subordinator are considered, their distributions are characterized, and governing equations for them are presented. The equations are given in terms of the generalized fractional derivatives, namely, convolution-type derivatives with respect to Bernštein functions. Some particular examples are presented.
Some equations are provided for the Variance Gamma process using the definition other than that based on a time-changed Brownian motion. A new nonlocal equation is obtained involving generalized Weyl derivatives, which is true even in the drifted case. The connection to special functions is in focus, and a space equation for the process is studied. In conclusion, the convergence in distribution of a compound Poisson process to the Variance Gamma process is observed.
A new modified Φ-Sobolev inequality for canonical ${L^{2}}$-Lévy processes, which are hybrid cases of the Brownian motion and pure jump-Lévy processes, is developed. Existing results included only a part of the Brownian motion process and pure jump processes. A generalized version of the Φ-Sobolev inequality for the Poisson and Wiener spaces is derived. Furthermore, the theorem can be applied to obtain concentration inequalities for canonical Lévy processes. In contrast to the measure concentration inequalities for the Brownian motion alone or pure jump Lévy processes alone, the measure concentration inequalities for canonical Lévy processes involve Lambert’s W-function. Examples of inequalities are also presented, such as the supremum of Lévy processes in the case of mixed Brownian motion and Poisson processes.
This paper provides a multivariate extension of Bertoin’s pathwise construction of a Lévy process conditioned to stay positive or negative. Thus obtained processes conditioned to stay in half-spaces are closely related to the original process on a compact time interval seen from its directional extremal points. In the case of a correlated Brownian motion the law of the conditioned process is obtained by a linear transformation of a standard Brownian motion and an independent Bessel-3 process. Further motivation is provided by a limit theorem corresponding to zooming in on a Lévy process with a Brownian part at the point of its directional infimum. Applications to zooming in at the point furthest from the origin are envisaged.
In this article, the compound Poisson process of order k (CPPoK) is introduced and its properties are discussed. Further, using mixture of tempered stable subordinators (MTSS) and its right continuous inverse, the two subordinated CPPoK with various distributional properties are studied. It is also shown that the space and tempered space fractional versions of CPPoK and PPoK can be obtained, which generalize the process defined in [Statist. Probab. Lett. 82 (2012), 852–858].
Under suitable conditions, the integro-differential equations for the density of ${I_{t}}$ and ${I_{\infty }}$ are derived. Sufficient conditions are derived for the existence of a smooth density of the laws of these functionals with respect to the Lebesgue measure. In the particular case of Lévy processes these equations can be simplified and, in a number of cases, solved explicitly.
We deal with a generalization of the risk model with stochastic premiums where dividends are paid according to a constant dividend strategy and consider heuristic approximations for the ruin probability. To be more precise, we construct five- and three-moment analogues to the De Vylder approximation. To this end, we obtain an explicit formula for the ruin probability in the case of exponentially distributed premium and claim sizes. Finally, we analyze the accuracy of the approximations for some typical distributions of premium and claim sizes using statistical estimates obtained by the Monte Carlo methods.
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
In this paper we establish the existence and the uniqueness of the solution of a special class of BSDEs for Lévy processes in the case of a Lipschitz generator of sublinear growth. We then study a related problem of logarithmic utility maximization of the terminal wealth in the filtration generated by an arbitrary Lévy process.
The paper deals with a generalization of the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. First of all, we derive piecewise integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. In addition, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes and find explicit formulas for the ruin probability as well as for the expected discounted dividend payments. Lastly, numerical illustrations for some multi-layer dividend strategies are presented.