The paper presents bounds for the distributions of suprema for a particular class of sub-Gaussian type random fields defined over spaces with anisotropic metrics. The results are applied to random fields related to stochastic heat equations with fractional noise: bounds for the tail distributions of suprema and estimates for the rate of growth are provided for such fields.
A stochastic heat equation on $[0,T]\times B$, where B is a bounded domain, is considered. The equation is driven by a general stochastic measure, for which only σ-additivity in probability is assumed. The existence, uniqueness and Hölder regularity of the solution are proved.
A solution is given to generalized backward stochastic differential equations driven by a real-valued RCLL martingale on an arbitrary filtered probability space. The existence and uniqueness of a solution are proved via the Yosida approximation method when the generators are only stochastic monotone with respect to the y-variable and stochastic Lipschitz with respect to the z-variable, with different linear growth conditions.
The class of one-dimensional equations driven by a stochastic measure μ is studied. For μ only σ-additivity in probability is assumed. This class of equations includes the Burgers equation and the heat equation. The existence and uniqueness of the solution are proved, and the averaging principle for the equation is studied.
The stochastic transport equation is considered where the randomness is given by a symmetric integral with respect to a stochastic measure. For a stochastic measure, only σ-additivity in probability and continuity of paths is assumed. Existence and uniqueness of a weak solution to the equation are proved.
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H < 3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
The paper presents the study on the existence and uniqueness (strong and in law) of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributions of a continuous function.
This paper deals with linear stochastic partial differential equations with variable coefficients driven by Lévy white noise. First, an existence theorem for integral transforms of Lévy white noise is derived and the existence of generalized and mild solutions of second order elliptic partial differential equations is proved. Further, the generalized electric Schrödinger operator for different potential functions V is discussed.
We consider the cable equation in the mild form driven by a general stochastic measure. The averaging principle for the equation is established. The rate of convergence is estimated. The regularity of the mild solution is also studied. The orders in time and space variables in the Holder condition for the solution are improved in comparison with previous results in the literature on this topic.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.