A time continuous statistical model of chirp signal observed against the background of stationary Gaussian noise is considered in the paper. Asymptotic normality of the LSE for parameters of such a sinusoidal regression model is obtained.
The object of investigation is the mixed fractional Brownian motion of the form ${X_{t}}=\kappa {B_{t}^{{H_{1}}}}+\sigma {B_{t}^{{H_{2}}}}$, driven by two independent fractional Brownian motions ${B_{1}^{H}}$ and ${B_{2}^{H}}$ with Hurst parameters ${H_{1}}\lt {H_{2}}$. Strongly consistent estimators of unknown model parameters ${({H_{1}},{H_{2}},{\kappa ^{2}},{\sigma ^{2}})^{\top }}$ are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for $0\lt {H_{1}}\lt {H_{2}}\lt \frac{3}{4}$.
A multivariate trigonometric regression model is considered. In the paper strong consistency of the least squares estimator for amplitudes and angular frequencies is obtained for such a multivariate model on the assumption that the random noise is a homogeneous or homogeneous and isotropic Gaussian, specifically, strongly dependent random field on ${\mathbb{R}^{M}},M\ge 3$.
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H < 3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ is a weighted fractional Brownian motion with parameters $a>-1$, $|b|<1$, $|b|<a+1$. Least square-type estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are provided, respectively, for $(\theta ,\mu )$ and $(\theta ,\alpha )$ based on a continuous-time observation of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $. The strong consistency and the joint asymptotic distribution of $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are studied. Moreover, it is obtained that the limit distribution of ${\widetilde{\theta }_{T}}$ is a Cauchy-type distribution, and ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ are asymptotically normal.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
This paper deals with a homoskedastic errors-in-variables linear regression model and properties of the total least squares (TLS) estimator. We partly revise the consistency results for the TLS estimator previously obtained by the author [18]. We present complete and comprehensive proofs of consistency theorems. A theoretical foundation for construction of the TLS estimator and its relation to the generalized eigenvalue problem is explained. Particularly, the uniqueness of the estimate is proved. The Frobenius norm in the definition of the estimator can be substituted by the spectral norm, or by any other unitarily invariant norm; then the consistency results are still valid.
with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.